
'*NAVAL POSTGRADUATE SCHOOL
Monterey, California

1w%

N

It A DTIC
SELECTE~lMARO8 8 9

THESIS
THE DEVELOPMENT

OF A
RAPID PROTOTYPING ENVIRONMENT

by

Laura J. White

December 1989

Thesis Advisor: Luqi

Approved for public release; distribution is unlimited.

90 03 07 040

Unclassifiled
111UMIY CLASSIUIAIKON OF *8141S PAME

W REPORT DOCUMENTATION PAGE
IS. RtPORt St(URIt'Y CLA$SIIKIIIN lb RLStRXIVE MARKIUS,

UNCLASSIFIED_________________________

14, SECU11ItY CLASSIfICA11K0N AUIIIORITY J DIIIRIUUIIUUAVAILA~itIIY OF WEORT

lb, DECLASIIAIIQNIOVVNGAW.NQ SCHEDULI

41 P1011O60M11k ORGANIZA11ION REPORT NUMUERISI s MurltutNu OxtNAiZION4 mRPo~r NumottiRsl

64. MAW OF PERFORtMING ORGANIZATION 6 b OfFICE SYMBOL IS NAME OF MONITOFING ORGANUATION

Naval Postgraduate School 1p0kbk Naval Postgraduate School

6C. AMIRSS (CiIV. lott, "n &I'Co*))b ADDRESS (City. State. and ZIP Cede)

Monterey, CA 9394~3-5000 Mionterey. CA 919413-5000

S, NAME OF FUNDING ISPONSORING Ilb OFFICE SYMBOL. 9 PRUCURECANT INSTRUMENT IDENTIFiCATION NUMBER
ORGANIZATION (Iappicablf) &

Sk. AMI(SS (Chri' Slate. and ZIP Code) 10 SOURCE Of FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIIT
ELEMENT NO NO NO ACCESSION NO.

1I, TITLE fbtcAmd $*(wDily ClaSi~fealiA,)

tHE DEVELOPMNT OF A RAPID PROTOTYPING ENVIRONMENT (UNCLASSIFIED)

12, PERSONAL AUTHOR(S)
W White, Laura J.

13s. TYPE OF REPORT 111b, TIME COVERED 14AEOFRPORT (Yarit h IS PAGECOUNT
Master's Thesis jFROM____ To 1___ 989 Decemiber ft4 On'*Y) 3U1

16. SUPPtEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official
policy or position~of the Department of Defense or thle U.S. Government

1l. COSATI CODES 1S SUBJECT TERMS (Coninue on reverse if necessary aid Idliy, by block ntumber)
FIELD GROUP IUN.GROUP Rapid Prototyping, PSDL, CAPS, Graphic Editor, Syntax

Directed Editor, Translator, Static Scheduler, Software
Database. Real-TIme Software, E~mbedlded Systems

19 ABSTRACT (Contknue on~ t*etst Hi ,mcessary and Wenli,'y by block number)
Currently the development and maintenance of DOD embedded software systems with hard real-

time constraints is a very complex, time-consuming and costly took. This situation can be
iaproved by the use of adequate development methods and powerful support tools. This thesis
explores the development and integration of rapid prototyping tools for tile Computer Aided
Prototyping System (CAPS). CAPS supports thle design and evolution of large, reliable embedded
software systems while significantly reducing their associated development and maintenance
costs.

CAPS utilizes the Prototype System Description Language (PSDL) and an integrated set of
construction and analysis tools. The integration of these tools utilizes previous work on
their design, with partial implementations and feasibility studies- for some of thle tools. We
ave defined and implemented a user interface while testing previous tools, refining thle
esigns of the tools and either refining the implementations or generating the initial imnple-
eiltapions. The user interface provides systematic access to the tools of the environment

DODFORM 1473,.84MAII 83 APR edit:on may be used untilexhausted SECURITY CLASSIFCATION OF THIS PAGE
All other edition% are obsolete - .. Go#A A 0 11I 0111664 198 4-21.s

i Unclassified

Unclassified
8*aaM!" CL&ISIP)ATI01 Of tUM PA04

19. ABSTRACT Continued:

to support the underlying rapid prototyping methodology. Integration issues include
system configuration, incteration testing, design modificozions, implementations, and
evolution of previously developed tools within this rapid prototyping environment.

Aooesslon Yor

STIS GRWA& -W
DTIC TAB 0
Unnnounced 0
Jotifiontion-.

By-

Distribution/

Availablity Codes
ei-id/or

Dist Spact1i1

Unclassified

SECURITY CLASSIrICATION OF THIS PAGE

Appromwd for pulilic release; distribution is unlimited.

The Development

of n
Rnpid Prototyping Environment

by

Lnura J. White
Lieutenant, United States Navy

B.S,. University of New Mexico, 1984

Submitted in partial fulfillment

of the requirements for he degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1989

Author: e t f
Lg J.White

Approved by: * '-

Luqli, Ilesis Advisor

hn MYuc € Second Reader

Robert B. McGhee, Chairman

Department of Computer Science

* ill

ABSTRACT

Currently the dcvelopment and rnia tnw'c of DOD embedded software systens

with hard rea-timc constraints is a very complex, timne..onsuming and costly task. This

situation can be improved by the use of adequate development nethods and powerful

support tools. This thesis explores the development and integration of rapid prototyping

tools for the Computer Aided Prototyping System (CAPS). CAPS supl)orts the design

:uid evolution of large, reliable embedded software systems while significantly reducing

their associawed development and maintenai,.- costs.

O CAPS utilizes the Prototype System Description Language (PSDL) and an integrated

set of construction and ana'ysis tools. The integration of these tools utilizes previous

work on their design, with parn:il implementations and feasibility studies for some of the

tools. We have defined and inplemneted a user interface wbile testing pxvious tools,

refining the designs of the tools raid either refining the implementations or generating the

initial implementations. Tie user interface provides systematic access to the tools of the

environment to support the underlying rapid prototyping methodology. Integration isste

include system configuration, integration testing, design modifications, implementations,

and evolution of previously developed tools within this rzpid prototyping environment.

iY 7/

THESIS DISCLAIMER

Ada is a registcred trademark of the United States Government, Ada Joint Program

Office.

0

*

0
TABLE OF CONTENTS

I . I"TKDtCTION 1
A. ZQFTWARE D&VELOPHZT 1
B RAPID PROiTOTYPING 4

II. BACKGROUND*... *.. 7

A. TilE PRO TYPING SYSTEM DESCRIPTION LANGUAGE (PSOL) 7
D. THE COMPUTER AIDED PROTOTYXWG SYSTEM (CPS) 11
C. PSDL PRTOYPES IN CAPS 13

III. DESIGN ISSUES FOR THE DEVELOPMENT Or CAPS 9.... 1
A. CAPS SYSTE4 ccorIGURATION 19
B. H&THWV0.)GY FOR INTEGRATION 21

C. PORTABILITY AND SYSTE*4 DEPZDNCIES 23
IV. TilE USER INTERFACE *.....9.* 25

A. PREVIOUS DESIGN 25
B. PREVIOUJS IMPLZMZNTATIOW * a 25

C. MODIFICATIONS TO THE DESIGN ; 21
1. User Interface Responsibilities 29
2. Mehhodology For User Interaction 29

4. VI en CnTiA T n y * 99.. ... 32

V. THE GRAPHIC EDITOR ... 3
A. PRK VIOUS DESIGN9.................9 36
S. PRZVIOU$ IMPLEMENTATION *...... 3.1

Co INTEGRATION 40
D. INTEGRATION TESTING *....... o9........ 42

E. HODIFICATIONS TO THE DESIGN AND THE IPLUIUTATION ,. 44
VI. THE SYNTAX DIRECTED EDITOP 57

A. LANGUAGE-BASED EDITOR GZEPRATORS 57
B. THE CORNELL SYNTHESIZtR GENERATOR *.......... 56

C. PREVIOUS DESIGN AND ;MPLEMMATION 60
D. DEVELOPMENT OF THE FSDL EDITOR 60..... 60

1. Abstract Syntax Declarations *......... 64

2. Unparsing Declarations 0.. 0. 67
3. Lexeme Declarations 71
4. Attribute Declarations 00.0 72

5. Concrete Input Declarations 73
6. Template Transformations 74

E. DESIGN ISSUES or THE COMPLETE PSDL SDITOR 75

F. INTEGRATION * * 80
G. USING THE PSDL EDITOR 89
H. FUTURE WORK .. 93

0
vi

V11. Tilt sorTwAR DATABA3E 5Y5TES4 *too 94
A.* REU3AIILITY 94
a. REQUIP.E*4ETS****..*.*.* .*........ 97
C. 3UKVtY or DATABSEz mhmaNG nT TEcHNoLoGIES to
Do * UTURE INTEGRATION 99 ... *..,*

VIII. THE TPANSLATORk *. 102
A. F RLVlQUZ DE IGN ,. * ,..* ***102

a. * RZvIOUS INLE&WNTATION ..,. *. ** * * * *106

c. *moDIICATIONS M
Do * NTEGRATION 0.*..... 106

IX. THE STATIC SCHEDULERt * . .*..... 109
A. * REVIOUS DESIGN 0 109
so* It'QL&MM#ATION III*******.**.*.**,~.*. 1
c. mODIFICATIONS **....** , 112

D. INTEGRATION oto.. 113
X. THE DT)AIIC SCHEDULER *.....,....116

A. PREVXOUS DESXGN . .*..... v . **.. ... *..* *.....*.... 116
Ba. HooIFICATXOS 114
C. INTEGRATION o~. o..ootoo~ 117

XI. THE DEBUGGER ***,**,*so**,**~*****~.. . 11......
A.* PREVIOUS DESIGN ,... 1
B * PREgVIOUS IHPLZ4ENATIOI .*.**o * 119
c. wMoIFICATXONS *.............................. 120

X11. CONCLUSIONS AND RECOMMNDATIO03 ..**..*.*......*.**..*........ 121

A.* CONCLUJSIONS *'.......................... 121
A. RECO4MNATIONS o.. e . 6oooo 122

APPENDIX A PSOL Griar *. .. .0..6 *..... .* ... *.**124

APPENDIX a C Source Cod* for User Interface (caps~c) 129
AJPPENDIX C Shell Script for Graphic Editor (ge) 136
AJPPENDIX D C Source Code for Graphic Editor (grapho) 137
APPENDIX E Pascal 3ource Code Graphic Editor (nodes.p) 193
APPENDIX Ir Icon for Graphic Editor (*ditorsicon) *....... 207
APPENDIX G 3SL Specification for Syntax Directed Editor

(pedl.as.sel) ***s.********.... 200
APPENDIX H 33L Specification for Syntax Directed Editor

(psdl.up.sal) .. 210
APP&NDIX I 33L Specification for Syntax Directed Editor

(psdl.iex.sul) 227
APPENDIX J 33L Specification for Syntax Directed Editor

APPENDIX K 33L Specification for Syntax Directed Editor
(psdl.ci.sal) 229

APPENDIX L 33L Specification for Syntax Directed Editor

APPENDIX M Kodiyak listing for Translator (tranalator.k) 240
APPENDIX 14 Ad& Source Code for PSOL Data Types (pedl-systema) ... 269
APPENDIX 0 Kodiyak listing for Static Schedulsr preprocessor

(preask)............ * * * 277

. APZK XX 1F Ala Z.ro'e C d# f(cr Static Scheduler driver

AFpz~rxX Q Ads Source Code for Static Scheduler exoeption hadler
(#-handlera 292

A??ZtfPXX R Ada Seurre Code for Static Scheduler exception handler
(* handler b.a) 293

APP98ZPtIX S Ada $0urce Qsde for Static Scheduler 9lo'als

APPZHDXX T AUa Source Code for Static Scheduler file procesom.
Cfp_*.*) , ... 29O

.VPNDIX U Ada Source Code for Static Scheduler file processor

At'?g$DZX V Ada Source Code for Static Scheduler graph utractwe

(graphsnsb.0 ! 304APWtMDXX N Ada Uutce Code far Static Scheduler graph structure
(graph* (b. 30f

A IfP.XX X Ada Source Code for Static Scheduler harmoao block

builder (hbb.b.a) 311
AfFUMIX Y Ada Source Code for Static Scheduler algoritlo

(scheduler al) ,. 311

APPDoMIX ZA Ada Source Code for Static Scheduler algorithms(scheduleross.s) 31S

APLPNDIX AS Ads Source Code for Static Scheduler listh srture

(sequelnces.a) *.... 331
APPrNDX AC Ads Source Code for Static Scheduler list structure

(requence b.a) 336
APP EDIX AD Ada Source Code for Static Schedulec topologicml oter(*te r *-.)of....00 336

AflrNDXX AD Ada Source Code for Static Scheduler topological sorter
APFrMDIX AZ Ada Source Code for Static SchKlulat topological sorter

(t cart-b.a) 342
APPFNDIX At Ada Source Code for Dynamic Scheduler

(dynamicascheduler.a) 343,
LIST Or Pr rEZP.NCES . .. 344
INITIAL DISTIXBUTXOW L1ST 347

via

ACKNOWLEDGEMENTS

Detcd t 13e;, egard. Budy and tste memory of Wolfgang, special fiend who

brotlh tmu ! hov A happincss into my life during the period of this thesis.

I %ould like i Xpres" my grtitude to iny family and friends for their continual

entouragcment. guidawcc and wisdom, which have contributed towards this thesis as well

mL any w1w€r IteS I havc ever attained.

I would alio like to express my thanks to sevend people who were closely involved

with this thcsLs: Professor Luqi for her contributions Li the foundation of this wodc and.for her guida ce during this research; Bernd Kraemer whose knowledge and pAience I

relied upon extensively; LCDR Yurchak mid LCDR Griffin for their advice and

encouragenxiit.

Discussions with many of lte faculty, staff anl students in the Computer Science

Departm ent, too rumerous to thank individually, contributed towads my ndertanding

of this work and helped me to finish this dhesi3 in the given time frame.

1. INTRODUC71ON

Thi ilicisis tlc .rihKs tile ikvlopment of a rapid pro'.otyping enviomnt. This

cha~pter Presen~ts a rief J,- .-riptR'n of thle softwaxe enlgineering problem and current

:11tllolgi~~ utilized hi Nofitvare development. '11c Proiotype System Dewcipion

Unguage tPSDL. thta Computer Aided Prototyping System (CAPS) awd PSDL pinto-

types in CAPS are tiescrihedI bricily in tile nex't chapter to provide a foundation for this

ttsii.rh &sign 4 CAPS. and more detailed disrussions of many of the primary tools

in tile Cn~viroinuun axe toxlitained in successive cha~pters. *lwse chapters are followed

with tour coni~usions and rcommuendations for further rcseurch.

A. SOFTWARE DEVELOPMENT

Thec United States Department of Defense (DoD) is currently the world's largest ume

of computers. Eaich year billions of dollars are allocated for the development and

maintenance of progressively more complex weapons and communications systems.

These systems increasingly rely on requirements for systems which process information

utilizing embecddcd computer systems. T7hese systems are often characterized by max-

imum time periods or deadlines within which some event must occur. ntese are known

as hard real-time constraints. Satellite control systems, missile guidatce systems and

communications networks are examples of embedded systems with hard real-time con-

straints. Correctness and reliability of these software systems is critical. Software

/
development of these systems is an immense task with increaslngy high costs and pon-

till for misdevelopment Il .

Over the past twenty years, the technological idvances in computer hardware tech-

nology have reduced the hardware costs of a total system from 85 percet to about 15

percent. In the early 1970N studies showed that computer soAware alone comprised

approximately 46 percent of the estimated total DoD computer costs. Of h cost, 56

percent was devoted specifically to embedded systems. In spite of the trerenous cost,

most large software systems were characterized as no providing the funcionality ta

was desired, took too long to build, cost too much time or space to use-, and could not

evolve to meet the user's changing needs (1].

Software engineering developed in response to the need to design, implment, test,

install and maintain more efficiently and correctly larger and moe complex software sys-

tems. The term software engineering was coined in 1967 by a NATO study group, and

endorsed by the 1968 NATO Software Engineering Conference [2]. The conferees

concluded that software engineering should use the philosophies and paradigm of tradi-

tional engineering disciplines. Numerous methodologies have been introduced to sup-

port software engineering. The two major approaches which underlie these different

methodologies are the waterfall model [3] of development with its variants such as the

spiral model (4], and the prototyping [5] method of development.

The waterfall model describes a sequential approach to software development as

shown in Figure 1-1. The requirements are completely determined before the system is

designed, implemented and tested. The cost of systems developed using this model is

e ~very high. Rcquircd modificationls which are realixed late in the development of a 3ys-

tcm, such as durinmg the te-sting phase, have a much greater impact on the cost of the sys-

temi thant they would have if they had been detennined (luring the requirements analysis

stage of the (Icvelopincnt. Requirements analysis may be considered the most critical

stage of software developmnent since this is when the systeM is defined (6].

VALIDATIONPRATON

SOFigure RE1 The Waterfall Model

RequirementsNAR arDfe nomltl EroN eulspcfddetohefenat

differenceIDTIO intetcnclbcgonso h sr n h nls.I sotntec

that~ ~ ~ ~ ~EAIE teueunrsadhiaplctoaraDoES N thaeheecnclbkgod

to comunicte sucessflly IseDTOeNaytwhlteanysisotfmir

enough ~ ~ ~ ~ ~ CD with th plcto odtc iu dernigbewnhisfadteuer

DEEOM3TTS

The successful development of a software system is strictly dependent upon this process.

The analyst must understam! the needs and desires of the user and the performance con-

straints of the intended software system in order to specify a complete an cotect

software system. Requirements specifications are still most widely written using the

English language, which is an ambiguous and non-specific mode of communication.

B. RAPID PROTOTYPING

The waterfall model lacks automation support. Systematic support using computer

aided tools has generally been unsuccessful for the waterfall model due to the informal

and heuristic nature of software system design. Formal modeling of software systems

and formal modeling of software development processes are key issues in automating the

software design process. Systematic reuse of software or design knowledge has also

been difficult because of the lack of specifications and explicitly recorded software

design knowledge.

Prototyping captures selected aspects of the proposed system by generating execut-

able models during the requirements analysis stage of software development. Trial use

of these models and feedback from the users are major mechanisms used to determine if

the defined system truly meets the user's needs before the system is designed, imple-

mented and tested. When the requirements have been validated, the final version of the

executable prototype provides a skeleton version of the critical aspects of the proposed

software system. The prototype design should be extended into the production version of

the proposed software system. This significantly reduces the cost and time of software

development [5].

4

'Tlie rapid itcri'tive construction of pretotypes within a computer aided environment

zwtonntes thc prototyping mcthod of software development and is called rapid prwotyp-

ing. Computer support shortens ti feedback cycle and introduces a degree of fonnality

into the process of detemining the requirements specifications. This offers a systcmatic

way to rapidly turn the requirements specifications into executable prototypes which can

be observed aid tested in their natural environment. Reuse of system components in the

process reduces the cost and effort hi the iterative process. A rapid probotyping model

[71 as applied to the requirements analysis phase of softwaxe development is shown in

Figure 1-2.

DrI)EERMINF. REQUIREMENTS COSRC

REQUREMNTSPROTOYPE

PROTOTYPE

REQUIREMENTS
ADJUSTMENT DEMONSTRATE

PROTOTYPE

MODULARIZATION

SYSTEM
IMPLEMENTATION

Figure 1-2. A Rapid Prolotyping Model

05

A forii automated prototyping process requires a rapid prootyping en'ironmnt

t8J. Such an environment can provide the designer with an integrated set of tools which

arc used to ticsign and test prototypes interactively. I1e requirements analyst and the

user may both observe the behavior of the prototype and ensure that the requirements

spcifictions meet the needs of the user. Rapid prototyping provides an efficient and

precise neans to determine the requirements for a software system, and greatly improves

the likelihood that the software system developed from these requirements will be com-

plete, correct and satisfactory to the user.

This thesis is part of a comprehensive framework for computer aided prototyping

which includes language support, methodological support and tool support. The com-

puter aided prototyping system is a pioneering effort with a long term impact on the auto-

mation of software design.

6

I. BACKGROUND

A. THE PROTOTYPING SYSTEM DESIGN LANGUAGE (PSDL)

PSDL [9] was designed as a prototyping language to provide the designer with a 1,im-

pie means to specify a high-level description of a software system. PSDL is an ideal

language for a rapid prototyping environment and is the prototyping language used by

the Computer Aided Pootyping System (CAPS). The design of PSDL places a strong

emphasis on modularity, simplicity, reuse, adaptability, abstraction, and requirements

tracing [5].

Modularity is essential for effective modification. Good modularity implies a proto-.type which is realized by a set of independent modules with narrow and explicitly

specified interfaces. PSDL supports this concept by means of operators and at& streams.

Two distinct operators can communicate or affect each other's behavior only when a data

stream explicitly connects the two operators.

Simplicity is supported by the small set of powerful constructs provided in PSDL.

PSDL designs are networks of operators connected by data stream. These networks can

be represented as data-flow diagrams augmented with timing and control constraints.

Operators in the system can represent functions or state machines. The data streams

carry exception conditions or values of arbitrary abstract data types.

PSDL supports reuse through uniform specifications suitable for retrieving reusable

components from a software base. The specification part of a PSDL component contains

0 7

several atributes which dcescribe the interface and behavior of the compone. Thee

attributes cani be used to generate automatically uniform specifications for storing and

retrieving reusable components.

PSDL supports adaptability through its ability to make small modifications to

modules by means of the control constraints. Control constraints affect modules in

several ways. They can be used to impose preconditions on the execution of a module,

filter the output of a module, suppress or raise exceptions in specified conditions, and to

control timers. These facilities provide the means to modify the behavior of a module

independently of its implementation.

PSDL provides abstractions suitable for describing large systems which may contain

real-time constraints. These abstractions include control constraints, timing constraints,

timers, functional *bstfactions and data abstractions, a
PSDL supports requirements tracing by means of a construct for declaring the

requirements which are associated with each part of a prototype. This is important

because the prototype must adapt to the changing perceptions of the requirements result-

ing from evaluations of the prototype behavior.

The computational model underlying PSDL can be described by an augmented graph

G = (V,ET,C). V is a set of vertices. E is a set of edges. T:V->R u (-) (where R

denotes the set of real numbers) is a function assigning the maximum execution time for

each vertex in V. PSDL permits bounded and unbounded maximum execution times.

C:V->R U J is a function assigning the control constraints for each vertex in V. In

this graph a vertex represents an operator and an edge is a data stream.

F

OPERATOR
TRIGGEMS YSOM@kA b

10 ms 20 ms

Figure2-1. PSDLGraph

Figure 2-1 shows an example of a PSDL design graph with operators A and B, and

Odata streams a, b, c, d. The graph also indicates timing constraints, 10 ms for A and 20

ms for B. Control constraints ar provided for operator A. The intended meaning of this

specification is that operator A receives input data on data streams a and b, processes the

data within 10 ms, and outputs data on data stream c. Operator B receives input data on

data stream c, processes the data within 20 ms, and outputs data on data stream d.

Operators represent functions or state machines. A function produces output whose

value is solely dependent upon the input values. A state machine produces output whose

value depends upon the input values and on internal state values representing some part

of the history of computation. Operators can be triggered either by the arrival of input

data values or by periodic timing constraints which specify the time intervals for which

an operator must fire. PSDL operators ae atomic or composite. Atomic operators.represent single operations and cannot be decomposed into subcomponents. Composite

9

operators represent networks of operators and data streams into which the operators may

be decomposed. Operators are also either periodic or sporadic. Periodic operors re at

regular intervals of tim while sporadic operators fire when there is new data on a set of

input data streams.

Data streams represent sequential data flow mechanisms which move data between

operators. Data streams are either data flow data streams or sampled data streams. Data

flow data streams are similar to FIFO queues with a length of one. Any value placed into

the queue must be read by another operator before any other data value may be placed

into the queue. Values read from the queue arm removed from the queue. Sampled data

streams may be considered as a single cell which may be written to or read from at any

time and as often as desired.

Timing constraints are essential for real-time systems. The timing constraints

impose an order on operator firing which is based on timing rather than on data flow.

There arm three basic types of timing constraints: 1) maximum execution time, 2) dead-

line or maximum response time, and 3) minimum calling period. Maximum execution

time is an upper bound on the length of time that an operator may use to complete its

function. Deadlines apply only to periodic operators and maximum response times apply

only to sporadic operators. For periodic operators, the deadline is an upper bound on the

time between the beginning of a period and the time that the operator places the last out-

put value onto a data stream during a period. For sporadic operators, the maximum

response time is an upper bound on the length of time between the arrival of one or more

new data values on an input data stream and the time when the final output is placed on

an output data stream. The minimum calling period applies only to sporadic operators

10

. and represents a lower bow" qn, the time between the Rrrivul of one set of inputs and the

"arln of another set of inputi.

Control constraints arm the mchanisms which refine and adopt the behavior of PSDL

operators. They specify how an operator may be fired, how exceptions may be raised,

and how or when data may be placed onto an operators output data stream.

The PSDL Grammar is shown in Appendix A.

B. THE COMPUTER AIDED FROTOTYINIG SYSTEM (CAPS)

CAPS is a unique rapid prototypig environment which includes the ability to proo-

type bard real-time systems. CAPS utilizes PSDL and an integrate set of protuyping

tools. The tools ame integrated through the user interface. The primary tools in CAPS

* may be divided into three main subsystems (5]. The subsystems mid their tools arm:

(1) the User Interface which is comprised of.
- a Graphic Editor (10]
- a Syntax Directed Editor (11]
- a Browser (5]
- an Expert System [5]

(2) the Software Database Systemn which is comprised of:-
-a Software Design Managemt. System (5)
-a Design Database (12]
a Software Base (13]

(3) the Execution Support System which is comprised of:
- a Translator [141
- a Static Scheduler (15,16]
- a Dynamic Scheduler [17]
- a Debugger (17]

"lihc Grnphic Editor is a tool which pemits a designer to specify the porion of a

PSDL prototype using graphical objects to reptesent the 3ystem. Otaphical objects

includ, optrators, inputs, otputs, data flows and self loops on operators. All graphic

objects an: non md and may have time constraints associated with them.

The Syntax Directed Editor is used by the designer to enter the textual pontions of the

prototype design not represented by the graphic editor and to ensure that the protype is

syntactically correct PSDL.

The Browser provides a ieans for the designer to view reusable componets in the

software base,

The Expert System provides a paraphrasing capability that generates English text

descriptions of PSDL specifications. "ntis tools permit% users who am unfamiliar with

the PSDL language to evaluate a prototype.

The Software Design Management System manages and retrieves the versions,

refinements and alternatives of the prototypes in the design database and the "We

components in the software base.

The Design Database contains PSDL prototype descriptions for all software projects

developed using CAPS.

The Software Base contains PSDL descriptions and implementations for all reusable

software components developed using CAPS.

The Translator generates high level code from the PSDL prototype which binds the

reusable components from the software base to the executable prototype.

12

The Static Scheduler attempts to allocate time slots for the reprcstiita, n of PSDL

operators, with real-time ,onstraints before the prototype is executed. If th amocation

succeeds, all operators are guaranteed to meet their deadlines.

The Dynamic Scheduler invokes representations of operators without real.time con-

straints at run-time to occupy time slots which are not used by operators with real-tie

constraints. The time slots which the dynamic scheduler uses ae coosidered as "slack

times". Dynamic scheduling occurs during execution of the prototype.

The Debugger allows the designer to interact with the execution support system. The

debugger has facilities for initiating the execution of a prototype, displaying execution

results or tracing information of the execution, and gathering statistics about a

prototype's behavior and performance.

Prior to the work described in this thesis, partial implementations had been

developed for the graphic editor, translator and the static scheduler. Designs of an expert

user interface and a debugger had been defined. Feasibility studies had been conducted

for the syntax directed editor, design database and the software base.

C. PSDL PROTOTYPES IN CAPS

PSDL prototypes are described by the designer in the graphic editor or the syntax

directed editor. OWe a prototype has been specified, the tools within the execution sup-

port symtcm will constn!ct an executable view of the prototype and then actually execute

the prototype. The execution support system assumes a syntactically correct PSDL

description.

13

PSDL proto~ypec omponents arm cither wi operator or a data type. A PSDL pmoo-

type may centain multiple type and/or operator components. All PSDL comiponents have

a specification part and an implenmentation part. M Theipementation part may either be a

PSDL bnplecntation or an Ads implementation.

'11we purpose of the two different implementation consttucte is to provide a simple

means for decomposing a prototype. A PSDL prototype can be represented by a tree

structure. The leaves of the tree arm somnic level components and they contain Ada

implementation parts. Figure 2-2 contains a simple top level graphic representation of a

PSDL prototype.

INPT SSE OTU

Figure 2-2. PSDL Prootype

If the node SYSTEM has a match in the software base of reusable Ada uoftware comn-

ponents, tl e the. node SYSTEM is atomic and comprises a complete description of the

prototype SYSTEM. In this cast no further decomposition is required. If a match for

SYSTEM is not found In the software base then t node SYSTEM is considered a compo-

site operator. In this case the designer has two choices. If the designer does not recog-

nize a conceptual decomposition of SYSTEM then the designer considers SYSTEM as

atomic although an Ada representation does not already exist. The designer may then

provide an Ada implementation for SYSTEM. The Ada implementation will be iternally

14

. substituted for the PSDL implcmentation. The prototypo would then be completely

described and is atomic. The Ada implementation will become a persistent convxnent in

the software base and will be matched in future sessions with CAPS. If the designer real-

izes a, decomposition for SYSTEM, then the designer will decompos the composite

operator with SYSTEM as the root of the tree. An example of a possible graphic decom-

position is shown in Figure 2-3. The new operators resulting from the decomposition ate

children of the operator SYSTEM in the tree structure.

Sr.rEM

INPUT FLOW OUTPUT

Figure 2-3. Decomposed PSDL Prototype.

Th identification and decomposition is recursively applied until the leaves of the

tree all contain Ada implementations. A possible complete tree structure for SYSTEM

can be a stg-le node. The complete tree structure will have a depth which is defined by

the maturity and modularity of the software base and/or the designer's conceptual model

of a properly decomposed system. A possible complete tree structure for a PSDL proto-

type is shown in Figure 2-4. It has two composite operators; SYSTEM and OP_2, and

three atomic operators OP., OP...2A and OP...2B.

0
15

OP-2AOP2

Figure 2-4. Tree Structure For PSDL Prototype.

A particular software base will eventually contain decompositions which reflect the

style of thinking used by its designers. It will become customized to its users as it

matures. The reusable components which arm added to an initial software base relect the

level of decomposition that the designers utilize in describing the systems which they

decompose. If the designers decide to provide Ad& implementations at a high level of

decomposition then the reusable components may tend to be large in size and may gen-

erally be very specific to certain applications. If the designers decompose the system into

very small modules, then the Ada implementations in the reusable software base will

tend to be very small and will more likely occur more frequently in the design of succes-

sive systems.

16

The evolution of the software base of" reusable components reflects the designers

preference between using PSDL and using Ada to express their own concepts of a sys-

tern. The design database will also reflect the style of its users.

The success of any rapid prototyping envkonment is strongly linked to the means by

which the designers may describe their prototypes. CAPS provides two means of

describing prototypes: the graphic editor and the syntax directed editor, The majority of

the designs in the design database will eventually be in the form that the users prefer.

The provision of two means for user input is an important human factors feeture.

CAPS does not attempt to constrain a designer to one mode of input. While visual pro-

gramming (18] is gaining momentum in research, the designers of CAPS recognize that

constraining a user to one particular mode of input which emphasizes just one method of

O abstraction might possibly reduce the effectiveness of the enviornent when applied

across a broad sample of users.

A current research question with regard to rapid prototyping is whether or not it is

really necessary to design a new language specifically for prototyping, and if so, what am

the necessary features and characteristics of the language?

The influence of any language on the problem domain must be considered. In this

regard, MacLen refers us to the Sapir-Whorf hypothesis [19] which states that the

structure of language defines the boundaries of thought. The use of a given language

does not prevent certain thoughts but does facilitate or impede certain modes of thought.

This lends support to the idea that a careful choice of language can reduce the conceptual

barriera in the design of embedded software systems.

17

i2

Computer lIaguages have evolved over time in response to the prceivelp

of existing languages. As languages have evolved, important principle\ which relate t

the design, evaluation, and implementation of languages have evolved swell. Ada has

been designed as a response to DoD's need for a standard language wvhixpides allof

the features we currently perceive as necessary to develop and mainta n large sowiat.

systems. Ada contains features which were not encompassed in an) one. previously

existing language. Since our rapid prototyping environment is aimed at large, real-time,

embedded systems, our executable prototypes must be able to be expread in Ada. Ada

is a complex language which supports abstraction, information hiding, modlarity, locali-

zation, uniformity, completeness and confirmability. The complexity of AL leads to the

need for a prototyping language.

The prototyping language must provide a simple yet expressive means for a designer

to describe a system. The prototyping language must support a cont effective means to

establish the requirements of a system. The prolotyping language must support the

features of the Ada programming language. PSDL meets these requirements (20).

18

III. DESIGN ISSUES FOR THE DEVELOPMENT OF CAPS

The design and feasibility study of CAPS has been prtially influenced by local

resources, personnel wand equipment. Although the primary researchers are permanently

assigned, the secondary researchers are mostly students with diverse backgrounds who

are able to devote only a short period of time towards development. Student contribu-

tions have varied in methodology and programming languages used, and they reflect the

somewhat diverse backgrounds of the many students who have been involved. The

develop ent of CAPS has been a long term project. The design and feasibility study for

the implementation of the underlying prototyping language has occurred over the last five

. years, and continues to progress.

A. CAPS SYSTEM CONFIGURATION

The initial step in the development of our rapid prototyping environment was to

define an interface between tools and a system configuration. The best utilization of pre-

vious work in the design and implementation of CAPS tools was an essential factor in

our decision. The previous development of CAPS tools utilized and assuumed the availa-

bility of a Sun Workstation.

There were two primary methods of integration considered for the initial develop.

ment of CAPS. One method was to define an interface which would manage a collection

of loosely coupled tools. The second method was to define a software architecture as a

foundation for tool integration.

Il.. Sun Operating System provides the simple UNIX [211 interface of the text

streasn. The UNIX method of tool integration defines an environment which consists of i

collection of loosely coupled tools. An advantage of this method s its simplicity. An

environ ent shell program which provides the interface with the user and manages the

connlunications between the tools provides an easy means to integrate new tools and to

extend the capabilities of existing tools. A disadvantage of this method of inegration is

that it may result in multiple data components which represent a prootype. Each data

component produced by a particular tool is most likely a partial view of a complete pro-

totype whic' reflects the transformation of data performed by each particular tool. Other

disadvantages of this method are that the interface must be modified to add or remove

tools from the system and that the environment contains a lesser degee of integration

granularity.

An example of the second method of integration is the Illinois Software Engineering

Program (ISEP) (22] which describes an open systems architecture for tool integration.

This method defines a software bus which provides for the interconnection and intercom-

munication between the tools within the environment. All tools communicate with other

tools by means of a set of communication protocols specially defined for each tool. Any

two tools may communicate which have a common set of protocols. The advantage of

this methodology is that it is intended to support the integration of new tools indepen-

dently of the other tools in the environment. The disadvantage of this methodology is

that it requires the development of a complex set of protocols for each tool in the

environment.

20

.The previous work on the bottom-up development of the CAPS tools assumed the

first nethod of integration. Due to this assumption and its simplicity we chs to connect

the tools within the CAPS envkinm in the UNIX fashion by passing streams of data

between the different tools.

The system configuration for CAPS is a natural decomposition of the CAPS design.

A system directory is considered the root of the enironment with subdirectories for each

of the tools, The subdirectories contain the required components that make up each of

the tools and contain documentation specific to each tool.

B. METHODOLOGY FOR INTEGRATION

The first implementation requirement for the envkonment is the user inteface, since.it is the user interface which manages the tools in the environment. Once a bac user

interface was designed, we realized that the process of integration would be a somewhat

circular process with iterative refinements.

The interdependence of the CAPS tools required us to simulate ite functionality of

some tools while testing other tools. We. decided that the most natural tools to include in

the initial integration process were the tools within the user interface. The directory pro-

totypes in the system configuration simulates the storage locations of both the design

database and the software base. We realized that the database management functions

could be performed manually until development, integration, and testing of the databases

could be perforred,

21

A systematic approach for the integration of a partially developet set of tools was

cstabli hed which would make the best use of previous work. The itegroasn methodol-

ogy for the tools consists of ten primay steps:

Step 1:

lkntify, locate and relocate all of the subcomponents and products of a paticular

tool. The subComponents were relocated to form an identifiable modular represents-

tion of each particular tool.

Step 2:

Determine the dependencies between the subcomponents of each tool and to deter-

mine how each subcomponent was intended to imeract with the other subcom-

ponents.

Step 3:

Resolve any naming conflicts which existed with the subcomponents of a tool or the

data it produced with the names expected by other tools in the envionment.

Step 4:

Determine how to compile the various subcomponents, and to detemdne which sys-

tem libraries needed to be linked with each subcomponents.

Step 5:

Separate the functional components of a tool from the partial views of a prootype

which were used by the previous developers to test their tools and to load these sub-

components in the proper places within our system configuration.

. Step 6:

Test tact tool to validate the functionality of the tool with its previous documena-

tion. In most cases the previous documentation did no make much distinction

between the long term designs and the state of the actual implementations of the

tools.

Step 7:

Identify areas of functionality which would significantly inpove the usefulness of

each tool.

Step 8:

Correct bugs discovered during the sixth step, implement features of the tools which

were described in the previous design but which had not actually been imple-

mented; and implement features identified in step seven.

Step 9:

Identify test cases which were appropriate for the current state of the envitonent

and test the tool from within CAPS.

Step 10:

Document the results of the ninth step and to document any new ideas which

resulted from the integration testing and evaluation of the current tool.

C. PORTABILITY AND SYSTEM DEPENDENCIES

The primary goal of the CAPS designers is to focus on the design and feasibility of

developing a rapid prototyping environment and not on the development of a production

* 23

sys(tCm. An early decision was mIade to accept dependence upon the best locally avail-

able resources. Portability of our particular environment is considered a secondary goal.

Our inplementation currently uses the local Sun system configuration and depends

on features of the local installation such as the server and printer nmes on our Sun NFS.

Tbe use of these local resources enhances the development process by permitting mor

flexibility in the use of local resources shared by many other students and faculty at our

research location. The use of system dependent name definitions have been localized to

the front el of the user interface. This localization allows the system to be redefined

with minimum effort.

An early decision was also made to utilize existing tools for the development of our

own tools and our environnent. Pan of the research involved with the development of

our environment and its tools was to survey and evaluate existing tools which were

potential candidates for use in developing our tools or as candidates to be integaed into

CAPS to represent one of our tools.

24

IV. THE USER INTERFACE

A. PREVIOUS DESIGN

The previous design of an expert user interface (23] defines an interface which pro-

vides sequence control with data pftoection. The user interface guides a user through the

rapid prototyping process according to the following guidelines (23]:

- The interface must be able to interpret what the user is doing at
any time and provide support".

- "The expert system must communicate with the users to fiWd out what
they want to do at any moment when the system cannot be sure of the
user's intentions".

.The following goals were defined in the design of the user interface:

- Required input data should only be entered once.
- Feedback should always be provided during data entry.
- The user interface should be adaptable to accommodate both the

novice and the experienced user.

The major commands defined in the top level user's manual were:

- caps
- construct
- execute
- modify

B. PREVIOUS IMPLEMENTATION

An implementation for the user interface had not been previously developed. Raum

[23] described and implemented a link statement analyzer as part of the user interface.

25

The link saterment analyzer translates the link statements generated by the ;4rph;c editor

into textual PSDL constructs,

1r- input to the link statement analyzer is a data component produced by the graphic

editor and stored in the file 8raph.links. Tim data in this file are PSDL link satemenmt

which represent the graphic structure of a PSDL design. The form of a lhn statemenw

without an optional maximum execution time is name.source->sink where namew is the

name of the data, and source and sink are either the keyword EXTERNAL or names of

operators. The form of a link statement with an MET is name.source:MET>sink. Fig-

ure 4-1 (a) shows a PSDL design produced with the graphic editor. The corresponding

link statements generated are depicted in Figure 4-1 (b).

The link statement analyzer processes the link statements and generates two new data

components. A file called psdI.ds is created which contains a list of all PSDL data

streams in the graph. Additional files am created for each operator in the graph. These

files are called NewNode-X, where the XX represents abitrarily assigned consecutive

numbers. The NewNode.XX files are textual PSDL specification pans which contain all

the information about an operator which was entered through the graphic editor. Thes

files are intended to represent the prototype in the design database. This design does not

account for multiple instances of prototypes, or describe how related components ame

linked together in the design database. Figure 4-2 (a) shows the data component psdl.ds

and Figure 4-2 (b) shows the data components NewNode.01 and NewNode.02.

Although the link statement analyzer was fist designed as pan of the user interface,

we now consider it to be a component of the graphic editor.

26

d

a.EXTERNAL->op_1
b .EXTERNAL->op1l
c.op_1:10 ms->op_2
d.op_ 2:20 nis->op_2
e.op_.2:20 ms->EXTERNAL

(b)

Figuare 4- 1. PSDL Grqa and Link Statements

27

DATA STREAM c

OPERATOR op)

SPECIFICATION
INPUT a

b
OUTPUT c
MAXIMUM EXECUTION TIME 10 Ms

END

OPERATOR op_2
SPECIFICATION

INPUT c
STATE d
OUTPUT e
MAXIMUM EXECUTION TIME 20 ms

END
(b)

Figure 4-2, Products Of The Link Statement Analyzer

C. MODIFICATIONS TO THE DESIGN

Our modifications and enhancements to the previous design addressed the following

issues:

- the responsibilities of the user interface
- a methodology for user interaction
- the menu functions
- view consistency

28

. 1. User Interface Respomsibilities

We redefined the meaning of the user interface for implemenation p .

Raum's design of the user interface naintained the idea that the user interface was one of

the three main components of CAPS. Raum described Bourne Shell Scripts which only

mmaged the activities of the components of the user inerface, such as the graphic ciditor,

syntax directed editor, browser, expert system and the debugger. As described in the pre-

vious chapter we now view the user interface as the shell of the environment which

interacts with the user and manages all of the tools within the CAPS environment and not

just the tools which interact with the user. The effect of this modification changes the

responsibilities of the user interface.

The caps command was originally intended to be used to place the user into the

user interface portion of CAPS. The original caps command was to allow an optional

argument to assign a name to a new prototype. The caps command is now used to enter

the CAPS environment. The specification of a prototype name is not appropriate at this

level and the names of prototypes will be controlled from within the environment.

2. Methodology For User Interaction

We decided to design a simple menu driven interface for our initial integration.

Since the functionality of the user interface had not yet been well defined, we wanted to

provide a simple mechanism for integrating the previous work on the various tool. '!"e

chose text menus as our first mechanism for user interaction. We decided to utilize

mnemonic lettering for option selections. Selections are made by typing the first lower

case letter of an option at the prompt. The character selection mechanism only requires

29

that the user remember the activity that he wishes to be performed. This approach sup-

ports type-Wietcd selections And system evolution [24]. Ultimately, we intend to inpe-

ment a graphic interface.

3. Menu Functions

We dcfined menus which guide the user throuIh the process of rapid prototyping.

The main menu contains the functions:

- construct
- execute

- modify
- quit

The construct option places the designer in another menu which displays the

choices of construction tools. Currently the choices anm to use the graphic editor or the

syntax directed editor.

The execute option activates the execution support tools. These tools are the

translator, the static scheduler and the dynamic scheduler. After these tools produce the

data components which represent the executable prototype, the data components are

automatically compiled, linked, and executed.

The execution status messages were previously defined as:

Translation Complete
Static Scheduler Complete
Dynamic Scheduler Complete
Compilation Complete
Linking Complete
Execution Complete

These messages were used to bridge the wait time the user experienced while these

actions are performed. These messages were to be displayed after the action occurred.

30

. We realized that a message which informs a user of the current activity rather than the

previous cause of delay, is generally more satisfactory. The status message for linking

was determined to be unnecessary. The execution support tools each produce data com.

ponents which partially represent the executable prototype. All data components am

compiled and linked during the compilation state. We defined two status messages

which reflect the execution of the prototype. Since the execution of an embedded system

implies a continuous system, we defined an additional status message which responds to

a user input of turning off the system. The current st~us messages are:

Translating ...
Building Static Schedule;
Building Dynamic Schedule ...
Compiling...
Executing..
Execution Complete

The modify option had not yet been well defined in the previous documentation,.

We have defined the modify process to be equivalent to the construct process with one

major difference. When the modify option is selected a window should be opened which

contains the top-level names of all existing prototypes in the design database. The user

should be able to select a prototype for modification by selecting an entry with the

mouse. If the user selects a prototype with a .graph suffix, the graphic editor should be

automatically activated by the user interface. If the user selects a prototype with a text

suffix, the syntax directed editor should be automatically activated by the user interface.

The quit option was not defined in the previous documentation. The quit option

should be used to permit the user to clean up versions of prototype designs which were

* 31

gcnerated during the current session before exiting the envirrnmcnt. This proc's could

occur as shown in Figure 4-3.

Do you wi3sh to save:

prototypel.text? (y/n) : y
prototypel.graph7 (y/n) : y

prototype2.text? (y/n) : n
prototype2.graph? (y/n) : n

Figure 4-.3. Quit Process

4. View Consistency

A view is a representation for a particular abstraction. Multiple views may be

associated with the same abstraction. View consistency defines a principle where multi-

pie views of the same abstraction are always equivalent. This means that a change in one

view must be reflected in all other views which represent the same abstraction. View

consistency between the graphic and textual representations of prototype designs was an

important issue of integration which still requires further consideration.

Since the construction of a prototype design is expected to be an iterative process,

consistency issues are an immediate concern. Because CAPS supports the evolution of

software systems which may be developed and maintained by a large number of develop-

ers, we should not constrain the view of a prototype to the preferences of one particular

user. A view of a prototype may be required by muftiple users in the development pro-

cess, and may be required by many other users during evolution.

32

The view consistency problem is affected by the capabilities of the graphic editor

and the syntax directed editor. This mean that the problem is different dependent upon

whether a prototype may be completely or partially described within each tool. If we

constrain the capability of the graphic editor to describe only a simple data-flow diagram

which represents the PSDL graph construct and not permit the capability to completely

describe the prototype, then we define this as a partial graphic view. If the syntax

directed editor does not permit the capability to describe textually the link statements of a

PSDL graph construct, then we define this as a partial textual view. If a prototype may

be described completely within the graphic editor or the syntax directed editor, then we

define these views as a complete graphic view or a complete textual view. The method

of interaction between the construction tools will be dependent upon the final capabilities

.of the tools.

An initial view consistency exists for prototypes designed with the graphic editor.

The graphic editor generates a textual representation which is used by other tools later in

the rapid prototyping process. Our initial pipeline communication design will not ade-

quately support view consistency for prototypes which were initially described as a tex-

tual representation or for modified textual representations.

The problem with view consistency for textual representations is that the two

dimensional translation of logical objects into a graphic representation does not have a

generally satisfactory solution. Even if both tools utilize a common data structure, the

logical objects in the common data structure would still require a graphic translation for

the layout used in the graphic editor.

33

One solution which supports view consistency is to define the graphic editor as

the primary construction tool from which the prototype is completely described. The

interaction with the graphic editor would produce a partial graphic view and interaction

with the syntax directed editor would produce a partial textual view. 'he graphic editor

would utilize the syntax directed editor as an underlying mechanism to provide for

describing its textual attributes. The interaction between the editors must be defined so

that objects which are defined graphically cannot be modified by the syntax directed edi-

tor. This requires that the user have limitied access to the textual representation of a pro-

totype within the syntax directed editor.

C. IMPLEMENTATION

The user interface was implemented in the C programming language (25]. This

language was chosen due to the ease with which it interfaces with the unix shell. The use

of the C programming language gave us the power and structure of a high level language

and still provides very easy access to shell commands from within the program to

manage the various CAPS tools.

The simplicity of our menu design enables a user to trav-,rse the system with an ease

comparable to that provided by graphic interfaces. If an invalid selection is entered by

the user, an error message is displayed, and the user may enter another selection. An

sample of the menu design is provided with the main menu in Figure 4-4.

34

COHMUTER AIDED FIROTOTYPING SYSTEH

(c) onstuct
(O) xecute
(m) odify
(q)u t

Select Option:

Figure 4-4. CAPS Main Menu

Each valid selection from a menu cleats the screen, then either places the user in a

submenu if funher choices are available or places the user within the envirnment of a

paticular tool. This occurs by creating a new unix process which executes the desied

tool as a concurrent process with the user interface or any other currently active tools.

The implementation of the user interface is contained in Appendix B.

* 35

F!

V. THE GRAPHIC EDITOR

A. PREVIOUS DESIGN

The graphic editor (10] was designed to support efficient constrction and

modification of the graphical representation of PSDL prototypes. The graphic editor

assumes that it is running on a Sun Workstation with a three button mouse. It uses both

keyboard and mouse inputs. The control options of the graphic editor include load exist-

ing prototype, store current prototype, and quit the graphic editor.

Graphic representations of PSDL prototypes can be created by selecting the follow-

ing editing modes:

- draw operator
- draw input
- draw output
- draw data stream
- draw self loop

The graphic symbols which represent the corresponding language constructs are created

by the following process:

1. Position the mouse locator at the desired position in the drawing space.

2. Press the left mouse button down.

3. While holding the left mouse button down, move the mouse
to a position which defines the size or length of the object.
This rubber bands the type of object chosen in the editing mode.

4. Release the left mouse button when the desired length or location
is obtained.

36

OIlic keyboard and the text input mode are used to define identifier names and maximum

execution times (MET). All operators, inputs, outIpu"W, ? streas and self loop must

have identificr names specified. Additionally all operators must additionally have METs

specified. Objects are deleted by positioning the mouse on an object and pressing the

right mouse button. Error messages are overlaid in the drawing space.

The layout of the previous graphic editor is shown in Figure 5-1.

F dng Mo: I I DRAW DATA STAM DRAW SELF LOOP DMAW I44MT DRAW OlTI'UT

I&WI&C

Max btC T.:

3 system control group I editing mode group + text input group

Figure 5-1. Previous Graphic Editor

* 37

All graphic representations of designs are to be stored and managed by the design

database. Thorstenson (10] states that:

"If the graphical editor is going to be used to edit an existing diagram,

the user interface function must retrieve the necessary reconstruction In-
formation from the design database and store the information in a file
named graph.pic prior to invoking the editor. The graphical editor then
reads in this information and reconstructs the diagram."

The graphic editor only allows objects to be related to other objects as defined by

PSDL. Operators am: represented by bubbles. Bubbles may not overlap. Data streams

are represented by arrows where both the tail and Ira, j(the arrows are connected to

operators. Inputs are represented by arrows whose tails must be positioned in unoccu-

pied drawing space and heads must be connected to an operator. Outputs ar represented

by arrows whose tails are connected to an operator and heads are positioned in unoccu-

pied drawing space. Self loops which represent state variables appear as arrows whose

tails and heads are both connected to the same operator. PSDL operator decomposition

also requires that all of the components of an operator ame named. The graphic editor

will not permit an object to be entered into the drawing space until after the identifier

name has been entered and validated in the text input mode. PSDL operators also have a

MET associated with them which must also be specified before they may be drawn in the

drawing space. The identifiers must be syntactically correct Ada identifiers. The form of

a syntactically correct identifier is shown in Figure 5-2.

38

identifier :-letter flunderline) letter or digit)
letter :-upper case letter I lower caseletter
letter-ordigit :-letter I digit

Figure 5-2. PSDL Identifier

The form of a syntactically correct MET is shown in Figure 5-3. User input which

fails to meet the syntax requirements of PSDL is ignored, such a an input without an

associated operator, or an output without an associated operator.

HET :-digit-string (time-unit)
digit string :-digit I digit string
time unit :-'h' I 'Im' 1 ';1' I 's'

Figure 5-3. PSDL MET

Previous documnentation did not describe any direct interface between the graphc:

editor and the syntax directed editor, nor did it describe the decomiposition of a proqotp.

design from within the graphic editor.

3. PREVIOUS IMPLEMENTATION

The implementation of the grapic editor utilizes the suntools, sunwindows, pixrect

and math libraries on a sun 3 system. Thbe implementation of the graphic editor consists

of programs written in C, Pascal and UNIX C Shell.

* 39

C. INTEGRATION

The integration of the graphic editor into CAPS required that the component pas

which comprise the graphic editor and the data components produced by the graphic edi-

tor be identified and relocated into our system configuration. The dependencies between

the graphic editor components and the data components were also identified. The user

interface was modified to activate the graphic editor when the designer selected it from

within the construction menu.

The components which comprise the graphic editor reside in the directory:

/caps/graphic.editor. These components are:

editor.icon - icon for graphic-editor window
ge - C shell script program
graph - executable window based graphic editor
graph.c - C source code for graph
makid - executable utility to compile graph.c
makid.c - C source code for makid
nodes - graphic design link analyzer
nodes.p - Pascal source code for nodes

The products of the graphic editor which represent views of a prototype are placed in the

directory: /caps/prototypes.

The graphic editor is selected by the user interface (/caps/caps). The user interface calls

the graphic editor by creating a new process, which is a copy of the current process, and

then overlaying the new process with the script program, ge. This code segment is

shown in Figure 5-4.

40

if (fork(- 0)
code execl(SHELL1 SHELL, 0-f'41 GRPHIC-EVITOR, 0)
exit (code)

SHELL represents /bin/coh
GRAPHIC EDITOR represents /n/sunv2/vozr/capv/q.phiq dit~or/go

Figure 5-4. Code Segmnt

ge is dependent upon:

/caps/graphic-editor/graph
/caps/graphic..editor/nodes

ge creates the following file:

graph.c is conpiled by "makid graph.c"
which is equivalent to "cc graph.c -o graph -imn -suntool -lsunwindow -Ipizrect"

graph is dependent upon:
4dtor.icon

graph creates the following files:
/amps/prototypes/grsph.links
/caps/prototypes/graph.pic

nodes.p is compiled by "pc nodes.p -o nodes"

nodes is dependent upon:
/caps/prototypes/graph.l inks

nodes creates the following files:
/caps/prolotypesffisdl ds
/caps/prototypeslNewNode.XX's

* 41

D). INTEGRATION TESTING

The following incon sencies, missing features or important: enharcements weve

idenitified during the testing of the graphic editor.

1) The franre title in the, previous docuntation was stated as Graphicall Editor. The

frame title in the implementation was dataflow diagram editor.

2) There was no facility to print a hardcopy of a prototype design. The ability to print a

hardcopy of the graphic representation of a prototype was also determined to te an

important enhancement for documentation purposes. The use and capabilities of the

graphic editor couldl be described i. written documentation much more clearly with the

ability to show the format of the graphic editor.

3) The graphic editor utilized only a portion of the monitor. The default window size of

the. graphic editor was proportionAl to the monitor and used about 75 percent of the avail-

able screen space.W

4) A segmentation violation occurred intermittently. On a UNIX system a segmnentahion

violation indicates that a pointer has an assigned address outside,,(the user's data space.

5) Whenever an input, output or data-flow was erased from the drawing space, the last

pixel on the tail of an input, output or data-flow remained visible.

6) The functions of the mouse buttons were not visibly described within the screen

image of the graphic editor.

7) The graphic editor warning and error messages were displayed in the drawing space,

permitting the possibility of overlaying the graph.

42

. 8) The graphic editor has separate store and quit buttons yet the user was not permitw!

to exit the graphic editor via the quit button unless the design had bocn stored m.

9) The operator data components produced by the link statement malyzer wer not com-

plete specification constructs.

10) The command line help facility was not effective once the graphic editor was

integrated into the environment.

11) The delete operation was unpredictable. This feature was not compleftly imple-

mented in the previous implementation.

12) Inputs, Outputs and Data-flows; were not dipped. The symbols ae drawn exactly

as specified by the mouse inputs and not adjusted to the edges of the operors. The

impact of this is that the coitnuaction of a nice looking prototype can become tedious.

O This problem becomes worse on workstations with smaller monitors.

13) The graphic editor requires that the designer selects the tail position of an input, out-

put, or data-flow before the designer selects the head position of the input, output, or

data-flow. If the designer selects the end points of an input, output or data-flow in the

head then tail order, the input, output or data-flow simply disappears without any expla-

nation as to why the object was ignored. This is a cumbersome and unnecessary con-

straint on the user.

14) The objects in the graphic editor cannot be resized.

15) The objects in the graphic editor cannot be moved once positioned.

16) Data flows cannot be inverted.

43

17) "fihe keyboard inputs for the identifier names and maximum execution times are

translated to literal text characters. Backspaces used while entering these fields appear to

behave nomally but show up as control characters in the output files.

18) The n.n.es of objects ut the graph at'e not required to be unique.

19) Nans and time constraints may not be modified once their associated object is

placed in the (rawing space.

20) Units for time constraints in the PSDL language definition have a default value of

milliseconds. The graphic editor does not recognize this feature of the language.

21) The previous design assumed that only one single graphic view of a prototype would

exist when the load existing button was activated.

22) The mechanism for prototype decomposition was not described in the previous

design.

23) A complete prototype description cannot be entered within the graphic editor.

E. MODIFICATIONS TO THE DESIGN AND THE IMPLEMENTATION

The first ten items have been corrected in the design and the implementation. The

eleventh item was partially corrected, the remaining items have been corrected in design

1) We changed the frame title of the graphic;.editr from dataflow diagram editor in the

implementation to CAPS - GRAPHIC EDI' in both the design and the

implementation.

44!

2) Vc aked a print screen option to the graphic editor. This was implemented by creat-

ing a new control option button in the system control group panel of the graphic editor

for print design. The print design selection causes a screen dump to a file, which is then

sent to a printer. This option performed well when the graphic user was displayed on a

window device which was physically connected to a Sun server. The file did not survive

transfer across the network, when the physical window device was connected to a disk-

less workstation, due to the size of the transfer file. Since the functionality of the print

design button is inoperative on diskless workstations, a further modification was made to

determine the physical device that the user is on before displaying the print design but-

ton. If the user is physically located on a diskess workstation then the button is not pro-

vided.

. 3) We resized the default size of the graphic editor to better utilize the monitor display.

The graphic editor now utilizes 100 percent of the screen space.

4) We initialized dynamic memory to NULL in graph.c to correct the segmentation vio-

lation. This required systematic debugging to locate the source of the problem. The

location of the segmentation violation was in nodes.p. However, we traced it to graph.c

where memory was dynamically allocated but not initialized.

5) The tail pixel on inputs, outputs and data-flows was not erased when the rest of the

graphic symbol was erased. This occurred when inverting the pixels on the display from

the last mouse position to the current mouse position for pixels between the tail and the

head of the graphic symbol. This was accomplished with a built in sunview function. To

correct this problem the drawing space is redrawn when a symbol is erased. Since the

45

tail p.xcl is deleted from memory when a symbol is erased, redrawing causes the tail

pixel to disappear.

6) A mouse interface panel was created. This panel explicitly denotes the functions of

the left, middle and right mouse buttons. Tlhe mouse interface panel resides as the top

panel of the graphic editor since the designer must know how to interface with the editor

before he can make use of the tool. This reduces the size of the drawing space some-

what, but contributes to the usefulness of the graphic editor significantly. In considera-

tion for maintaining maximum area for the drawing space the editing mode panel was

reduced in size to eliminate unnecessary wasted space. During the design of the mouse

interface panel we also realized that the labels and buttons of the previous design were

not consistent. We corrected this as well. A later modification might be to enable the

expert user to delete this panel in favor of a larger drawing space.

7) A message panel for editor error messages and warnings was designed into the

graphic editor to avoid the possibility of overlaying the design with graphic editor mes-

sages. This panel resides immediately above the drawing space.

8) The capability to quit without saving a current session with the graphic editor was

implemented. Previously the designer could not quit the graphic editor without storing

the design, although two independent buttons are used for these functions. The previous

implementation would display a warning message that the graph had not been saved, and

would then ignore the request to quit. The designer could quit without storing by using

the pull down menu of the graphic editor frame. This design feature essentially

encouraged the designer to circumvent the tool. Since it is easily recognized that the

46

. esigner might like to quit without storing his current work, this option was integrated

into the giaphic editor. This was accomplished by using the sunview confirm feature

when the quit button is selected and the graph has not been saved. If the designer selects

quit without having saved the graph, then a warning message is displayed and a pop-up

confinnation sequence occurs. If the designer does want to save the graph before quit-

ting, then he may click the right mouse to cancel the quit request. If he did intend to quit

without saving then he may click the left mouse to confirm his request.

9) The operator data components produced by the link statement analyzer were corrected

to append the PSDL keyword END to the NewNode product. In the PSDL grammar all

SPECIFICATION keywords are bracketed with the keyword END.

10) The previous design and implementation included a command line help facility.. Since the graphic editor is an integrated tool within the CAPS environment, and is

invoked from within the user interface and not from the command line, this facility was

deleted.

11) The delete function was evaluated and partially corrected. The first bug identified

was the incorrect use of the C free function for dynamic memory. The free function was

applied to memory which was automatically allocated rather than dynamically allocated.

Kemighan and Ritchie state that "it is a ghastly error to free something not obtained by

calling calloc or malloc" [26]. This was corrected by eliminating the free function calls

within the file graph.c. The second bug related to the inconsistent behavior of the delete

function. It appeared as if all objects which are represented by arrows in the graphic edi-

tor such as inputs, outputs, data-flows and self loops should be able to be deleted by

47

piessing the right mouse button on the tail or the head of the object. But when the right

mouse was pressed on the head of a self loop the associated operator and all of its inputs,

outputs, data flows and self loops were deleted. Investigation revealed that when the

right mouse was pressed, if th1e mouse was located on an input, output, data-flow or self

loop the respective line would be deleted. If the right mouse was pressed and the graphic

editor did not determine that the mouse was positioned on an arrow, then it checked to

see if the right mouse was within an operator. When the right mouse was pressed on the

head of a self loop, and if the head of the self loop was located within an operator, the

graphic editor would never recognize that the mouse was positioned on a arrow so the

delete operations for an operator would be activated. The implenentation for drawing

arrows in the drawing space uses variable names which correspond to points within a

Cartesian coordinate system. The algoritun which creates the data structure which

represents an arrow always uses (xl,yl) as the tail and (x2,y2) as the head. The algo-

ritlun for checking if the right mouse is on a arrow, only checks if the mouse is posi-

tioned on the head or the tail of an arow. When a self loop is created (xl,yl) is the m..i,

but (x2,y2) is not actually the head. The actual Cartesian coordinates of the points for a

self loop are shown in Figure 5-5.

(x l, y2) (x2, y2)

(xI, yl) (x2, y)

Figure 5-5. Self Loop Locations

48

The head of a self loop is actually the point (x2,yl). The values stored as the head of a

self loop in the current implementation ae (x2,y2). Currently a self loop may be deleted

by selecting (xl,yl) or (x2,y2) with the middle mouse button. This causes the incon-

sistencies noted during testing. Since the algorithm does not recognize (x2,yl) as the

head of an arrow, if the arrow intersects an operator, then the operator and all elated

objects arm deleted (including the self loop). We decided that limiting the recognition of

an arrow to the end points was a poor design decision. Rather than correct the imple-

mentation to store (x2,yl) as the head of the self loop, we chose to temporarily resolve

this problem by redefining the mouse interface panel to state explicitly that deletion of

self loops is performed only when the mouse is positioned on the tail of a self loop. The

correct way to fix this problem is universal to all objects represented by arrows. The. graphic editor should be able to recognize all points along a line. When any object in

the drawing space is selected for deletion, the object should be highlighted in sorne

manner. A verification mechanism should also be utilized to avoid inadvertent deletions.

A pop-up window which requires that the designer verify the deletion should used when-

ever a delete operation is requested.

12) The input, output and data-flow symbols need to be clipped. The type of symbol is

specified, before the location or end points of the symbols are specified. The syntactic

correctness is checked using the symbol's related operators. The location of the opera-

tors is known to the graphic editor. The graphic editor should adjust the head of the input

and data-flow symbols to the borders of their respective operators. The tails of the output

and data-flow symbols should be adjusted to the borders of their respective operators.

4,

This will greatly reduce tl precision required of the designer to create a graphic

representation of the prototype with a neat appearance,

13) The tail then head constraint on the selection of input and output mouse $elections

should te removed. Since a draw input or draw output has been selected before the user

specifies the end points, the graphic editor should be able to determine the appropriate

head and tail position, and should permit the designer to select the end points in either

order.

14) The additional capability to resize objects should be implemented. Currently the

designer must delete then redraw an object which he would like to resize. The current

deletion of operators removes all related textual information and adjacent arrows, which

firther compounds this problem. Without a resizing capability, the designers might

eventually learn to always draw their designs on a small scale to ensure that they do not

run out of drawing space. This type of compensation would encourage poor utilization of

the drawing space and the tool. A resizing capability will enhance the friendliness and

usefulness of the graphic editor significantly. The resizing of objects may be imple-

mented by allowing the designer to select the border of an object by pressing down on

the left mouse button, dragging the mouse while the object rubber bands, and when the

object obtains the desired size, releasing the left mouse button to effect the change in size

of the object.

15) The implementation of the additional capability to relocate objects in the drawing

space is required. The lack of the ability to relocate objects will have the same negative

impact on a designer as the inability to resize objects. The designer may learn to over

50

. compensate thus reducing the effectiveness of the graphic editor. The relocation of

objects may be implemented with the following process. The designer should select the

border of an object to relocate by pressing down on the left mouse button. Then he

should drag the mouse to move the object. When the object has the new desired location

the designer may release the left mouse button to effect the change.

16) The ability to invert data-flows would be a nice enhancement. This should be iple-

mented by copying the existing end points, rewriting them in reverse order into the per-

manent data structure, and then redrawing the display.

17) The correct translation of keyboard back space input is essential since the output of

the graphic editor is used as input for other tools in the environment. The file nodes.p

must be modified to check for the back space control character, ind then adjust the char-

*acters in the text buffer appropriately.

18) The implementation of name analysis is an essential feature. A data structure should

be created which contains the names assigned to data flows and operators. Before new

names are accepted by the graphic editor, the names should be compared with existing

nanes. The graphic editor should analyze the object being named and ensure that

conflicts or multiple declarations are not defined. If the new name violates these condi-

tions, then a message should be displayed in the message panel and the designer should

redefine the name.

19) The modification of names and time constraints independently of their associated

operators requires that the graphic editor recognize the boundary of the names and time

constraints associated with an operator when selected with the mouse. Functions should

* 51

be provided in the file graph.c which control the modification of these objects whenever

they are selected.

20) Currently a tine constraint is required by the graphic editor for all operators. This

requirenlent should be renloved. If the designer d(s not enter a time constraint then a

default value of zero should be assigned. Currently, units are required for all tine con-

straints. Since the PSDL language uses milliseconds as a default value, the function

within the graphic editor which enforces the entry of units, should be modified to allow

the designer to omit this information. If the designer does not explicitly enter the units of

time then the default value should be assigned.

21) The previous design decision to have the user interface retrieve the necessary recon-

struction information from the design database and store the information into a file called

graph.pic, and to then have the designer select load existing after the graphic editor

becones available, separates the retrieval function into two different interfaces. This

function should be entirely controlled by either the user interface or the graphic editor.

Our design modification is to place this function entirely within the graphic editor. This

should occur with the following sequence of operations.

a. The designer selects the load existing button.

b. A pop-up listing is displayed in the drawing area which contains the names of the

existing designs. These designs should be ordered such that the most recently developed

designs occur in the listing before the other designs. This ordering assumes that designs

to be modified are more likely to be designs which were incompletely reconstructed or

pertain to the most recent development project.

520

* c. The designer should select a design by typing the name with the keyboard into a Small

window space or by pointing at a name with the mouse and prssing a mouse button to

make the selection.

d. The graphic editor makes a copy of the design file with a suffix reserved for backup

ffies.

e. The design is loaded into the graphic editor.

f. If the designer selects store with this design, then he is queried as to his desires for the

backup copy. He should be able to rename or remove the old copy. Eventually the

design database should perform version control and manage all of the versions of a

prototype.

g. If the designer selects quit without having stored the current version of the design,

. then the edited version is removed and the name of the backup copy is restored to its ori-

ginal name.

Consistency of design indicates that the graphic editor should control the naming of all

graphic designs. Naming should occur when the store button is selected. Until the

design database is implemented, the directory /caps/prototypes/ should be used to contain

the prototype designs.

22) The decomposition process of a PSDL prototype design was not previously

described. The existing data structures currently used in the graphic editor should be

modified to add another dimension. This dimension would generate a linked list of

operators to their decompositions. Three new buttons search, decompose and compose

should be added to the system control group panel. The search button interacts with the

0 53

Database Muiagement System. The implementation of this function should provide the

user with the capability to retrieve both prototype designs and reusable software corn-

ponents. This button has been added to the graphic editor layout but its functionslky has

not yet ien implemented. The details of these operations are further defined in a later

chapter. When the decompose button is activated, the user selects an operator in the

current design, a link from the operator in the current data structure is created, and the

drawing space is cleared. The user nuty now construct the decomposition of the selected

operator. Infonation related to an operator must be consistent with the decomposition of

that operator. For example, if ani operator has a defined input, then when the operator is

decomposed that same input must appear as an EXTERNAL input in the decomposition

of the operator. If the designer has defined adjacent inputs, outputs, data streams, time

constraints or any other related information prior to selecting an operator for decomposi-

tion, this information should be visible to the designer when constructing the decomposi-

tion. The graphic editor must ensure that the information related to an operator is

consistent in both the decompo3ition and composition of the operator. When the com-

pose button is activated the drawing space is cleared and the design which contains the

parent operator is displayed. Tie decompose and the compose buttons have been added

to the graphic editor, but their functionalities have not yet been implemented.

23) We believe that a user should be able to describe a PSDL design completely from

within the graphic editor. Better utilization of sunview capabilities within the graphic

editor and enhancements to the current data structures used within the graphic editor sup-

port this modification. The use of pop-up menus and the use of multiple windows can

provide an interface which avoids clutter and information overload. The current set of

54

. graphic symbols remains sufficient. Optional PSDL constructs which relate to an opera-

tor aul are not currently supported by the graphic editor can be displayed within a pop-

up menu. Selections made within a pop-up menu can generate dialogue boxes where the

user describes the optional constructs. The dialogue boxes should be customized to sup-

port effectively each optional construct. A few examples of these constructs include con-

trol constraints, informal descriptions, and formal descriptions, Mechanisms used within

these dialogue boxes can be question and answer, mini syntax directed editors, or simple

text editors. This informationx represents an annotation view [27) of the operator. It will

not be visually persistent but will be attached to the operator. The existing data struc-

tures can be expanded to manage these constructs.

The layout of the graphic editor as it is currently implemented, with a simple proto-. type design, is shown in Figure 5-6. The functional components which comprise the

graphic editor are contained in Appendices C through F.

II
-i 3
: £

I

II!

Iw~

I

w] I
1

E I

U .=--i

Figure 5-6. Current Graphic Editor

56]

VI. THE SYNTAX DIRECTED EDITOR

Language-based editors or syntax directed editors art editors which ame tailoted to a

specific language. These editors use tht grammar, srcture and static sernwiics of a

language to assist a user in writing correc programs. These editors gemeally enforce

syntactically correct program by providing program segment templates which contain

legal alternatives for the specific language and prohibit illegal constiucts. They may also

combine plain text editing with incrmental parsing techniques to ensure that only syn-

tactically correct program fragments are entered.

. A. LANGUAGE-BASED EMiOR GENERIATORS

Porter (11] performed a comparison of two predominant editor generators currently

in use for developing language based editors. These tools were the Cornell Synthesizer

Generator and the GANDALP ALOE Generator. Potter stated that the Cornell Syn-.

thesizer Generato~r (28,293 was the more appropriate tool for our purposes. Thec Gandaif

tool provides an envirornent which permits teamn development of system, software. It

exceeds the scope of the Cornell Synthesizer Generator by providing both programnung

and system development environments. The desired PSDL editor is designed as a tool

within the CAPS environment. CAPS provides its own System development capabilities.

The development of a PSDL editor using the GANDALP tool would underutilize the

GANDALF icMA.

57

Porter established the feasibility and recomnended the use of die Cornell Syn-

theiizer Generator for the devclopment of a PSDL editor for CAPS. We decided to fol-

low Porter's rcconmendation and did not conduct any further evalumion of editor

generators.

B. THE CORNELL SYNTHESIZER GENERATOR

The Synthesizer Generator creates a language-specific editor from an editor

specification which describes the language. The editor specification defines the abstract

syntax, context-sensitive relationships, display format, concrete input syntax, and

transformation rules for the editor. These specifications are written by the editor-designer

using the Synthesizer Specification Language (SSL).

The Cornell Synthesizer Generator is written in C and runs under UNIX. The central

components of an editor created from the Cornell Synthesizer Generator are the editing

kernel and the generator proper.

The editing kernel consists of four subcomponents which are common to all gen-

crated editors. These subcomponents are an attributed-tree module, the SSL-expresion

interpreter, the editor module, and the display module. The attributed-tree module con-

tains a set of operations for manipulating attributed trees. An example is the incremental

algorithm for updating a tree's attribute values after it has been modified. The SSL-

expression interpreter is invoked by the attributed-tree module. This occurs when-a new

value of an attribute instance is to be computed and when a transformation has been

applied to an attributed tree. The editor module provides the capabilities for

58

* manipulating objects within an editor. These objects ae contained in a collection of

buffers. The editor module provides the system commnds such as those for structural

editing and textual editing. The display module provides the support for video-display

terminals, bit-mapped workstations and mice.

The generator proper generates editors from editor specifications. It consists of a

shell program and the SSL translator. The shell program, sgen, coordinates the activities

of the SSL translator with the UNIX utilities, such as lex, yacc and cc, which are

employed during the process of creating an editor. The SSL translator processes the SSL

source which represents the editor specifications. Four unique subcomponents are created

for any generated editor. The subconponents am the editor's grammar tables, scanner,

parser, and sequences of byt.e-codes which are the internal representation of SSL

expressions.

The SSL reserved woeds which may not be used by an editor designer for any other

purpose are shown in Figure 6-1.

and as default demand end
exported ext.computers false forall foreign
in inh inherited left list
let local nil nilattr noMnees
on optional parse prec readonly
repeated right root sparse store
style syn synthesized transform true
typedef unparse view with

Figure 6-1. SSL Reserved Words

C. PREVIOUS DESIGN AND IMPLEMENTATION

Porter generated some partial specifications for a PSDL editor, but the specifications

were completely untested. After reviewing his work, we were unable to perform any

editing with those specifications. We chose to define our own approach to development

and to disregard the previous implementation.

D. DEVELOPMENT OF THE PSDL EDITOR

lie modular development of an editor using the Cornell Synthesizer Generator con-

sists of editor specifications which may be divided into six major components:

- abstract syntax declarations
- unparsing declarations
- lexical declarations
- concrete input syntax declarations
- attribute declarations and equations
- tenphites and transformations

Modular construction pemits the abstraction of the requirements of each component,

e nhances comprehensibility and incorporates effective extensibility for an editor. Good

engineering practice was also employed by first defining a small subset of the PSDL

language for the initial editor, while familiarizing ourselves with the specifics of the pro-

cess for generating an editor. The purpose and implementation details for the construc-

tion of each module is described using the initial subset of the PSDL grammar shown in

Figure 6-2. Some of the PSDL nonterminals have been eliminated or are treated as ter-

m'ials here in our subset. The complete PSDL grammar is contained in Appendix A.

60

padl

- (component)
component

- data type I operator
data-type

- "type" id type spec
operator

- "operator" Id operator.spec

type-Spec
- "specification" (type. decl "end"

operator.spec

- "specification" (interface) "end"
interface

- attribute (reqmta trace]
attribute

- input I output
input

- "input" type decl
output

- "output" typedacl
reqmta trace

- "by requirements" id-list
type decl

- id list ":" id
id list

- id (0," Id)
id

- letter (alphanumeric)
alphanumeric

- letter I digit
letter

- "a..%" I "A..Z" I " "

digit
- 10.9

Fiue 6-2. Original Subset Of PSDL Grammar

The descriptions of the SSL modules embodies lessons learned during the generation

of the editor that may be applied to the generation of any editor. We decided to make the

initial editor for use on a video terminal rather than a workstation due to the availability

* 61

of local resources. The final version of the editor within CAPS is expected to utilize

graphics with a mouse on a Sun Workstation.

Before writing any SSL specifications we reconmnend that the editor designer define

an intermediate grammar. There may exist several conditions in the BNF dialect of the

grammar which, if implemented literally, will probably produce an editor which is

cumbersome to the user. The intermediate graramar will not change the meaning of the

original grammr but will provide a more natural transition between the BNF grammar

and the SSL declarations.

NontermiA s that carry no specific semantic meaning should be eliminated. These

nonternnnals may exist in the BNF dialect of the grammar to enhance readability and

understandability. When used in the abstract syntax they produce unnecessary editing

steps and depth in the derivation trees. An example of this in our initial PSDL grammar

is the production for component which resolves to a datatype or an operator. We

redefined component in our intermediate gratmnar to be a "type" id typejpec or a

"operator" id operatorspec.

BNF dialects and SSL differ in the way that optional occurrences of nontenninals are

treated. A BNF dialect uses a mechanism to state that an instance of a nontemiinal is

optional. SSL uses a property declaration for the nonterminal to state that it is optional.

Thus all occurrences of that nonterminal are optional. We recommend that the editor

designer identify nonterminals in the BNF dialect of the grammar which have both

required and optional occurrences. A convention for creating new nonterminals in the

intermediate grammar to differentiate between optional and required instances of the

62

.nonterminals should be established. The new optional nonterminals cary the sue

semantic meanings as the original nonterminals. We created new noneminals for

optional instances and used a convention of prefixing optional to the name of the new

nonterminal for optional occurrences, An example of this issue occurs in our original

PSDL subset with the type..decl production. We created a new nonternml

optional type decl in our intermediate grammar. We also decided to maintain an

expressive regularity by renaming all nonterminals which only had optional occurrences

in the original grammar with the same optional prefix.

BNF dialects and SSL also differ in the way that optional instances of sequences of

terminals and nonterminals occur. In SSL a property declaration is used to specify that

all occurrences of a nonterminal are lists, or optional lists. Lists in SSL are treated as. binary trees. An SSL list must have exactly two operators. One operator is a nulliy

operator constructing an empty list and the other is a right recursive binary operator

adding a new list element to a given list. A list in SSL must contain at leas one element.

A production list = list-item (listjiem) would be reflected u a list in SSL. Optional lists

permit an instance of the list which is empty. A production such as list - (listitem)

would be reflected as m optional list in SSL We recommen' that the editor designer

identify whether sets in the original grammar are lists or optional lists. We renamed the

optional list nonterminals with the prefix optional list-. In our original granuar inter-

face is an optional list and was renamed to optionallist interface in our intermediate

grammar. In our original grammar id list is an list. Our intermediate grammar for the

PSDL subset is shown in Figure 6-3.

063

padl
" list _component

list.component
- "type" Id type spec I "operator" id operator spec

type spec
- "Specification" optional type.decl "end"

operator.spec
" HapacificatSon" optLonal.lit tinterface "end"

opional list.interface
- att7ribute optional.reqmt3.trace

attribute
- input I output

input
- "input" typejdecl

output
- "output" typejdecl

optional reqmts-trace
M "by requirements" Id list

type.decl
- id list ":" id

optional type decl
- id list ":" id

idlist
- id ("," id)id0
i- letter (alphanumeric)

alphanumeric
- letter I digit

letter
" "a..z" I"A..ZI I NN

digit
-"..9"

Figure 6-3. Intermediate PSDL Subset

1. Abstract Syntax Declarations

The abstract syntax is the core of the editor specification. It is defined as a set of

grammar rules. An object in the resultant editor is represented by a derivation tree which

is constructed based on the grammar.

64

The abstract syntax declarations may easily be defined from the imenemediate

granmar. The literals of the grammar are not considered at this stge as they do not

represent pans of a derivation tree. The abstract syntax for the PSDL subset is shown in

Figure 6-4.

Nonterminals with special propenies such as optional, list or optional list ae

/ denoted Ly using the appropriate property declarations in the abstract syntax. Optional

nonterminals must contain a nullary operator in addition to any other desired operators.

The abtmct syntax declarations arn a collection of productions. In SSL produc-

tions have the form O : op(xl x2 ... xk), where op is an operator name and each i is a

nonerninal of the grammar. The nonteminal is also referred to as a phylum. The phy-

lum associated with a given nontenninal is the set of Jeprivation trees that can be derived

O from it by using operators. Thes derivtion trees are referred to as terms. The operators

identify the production instances in a derivation tree.

The SSL grammar rule acts like a context-free production xO -> xl x2 ... k. All

operator names must be unique. The operator of a production distinguishes it firn the

other altemativec provided by the left hand side phylum. One phylum in the abstr

syntax declarations must be distinguished as the root phylum. All editable objlects in the

editor ae terms of the root phylum.

Phyla contain a completing term and a placeholder term. The stnae term may be

both a completing term and a placeholder term. The first operator declared for each phy-

lum is the completing operator. The completing operators construct default represelnta-

tions for the phylum called the completing term. An instance of the appropriate

* 5

root psdl comuponenta;
list psd3.comnponents;

pcomponenta

I ~ops3aionenonetpdcmoet)

IData(icl type pec)
I p(id operator spec);

Ope rator 3ptC
: OpSpec(optional-interface);

type a pftc
TypeSpec (optional type _declaration);

optional list optional-interface;
optional interf ace

*interraceNil(0
InterraceList (attribute optional-interface);

attribute
*EmptyAttr()
IInput (input optional-requirements)
IOutput (output optional requiremnts);

optional optional requirements;
optional requirements

:ReqmtsTrace~one ()
I IReqmtsPrompt()
I ReqmtsTrace (id liat);,

input
: nputTypeDecl (type decl);*

output
:OutputTypeDecl (type dccl);

type decl
: TypeDecl(id list type nam);

optional optional type declaration;
optional type declaration

OptTypeDeclxil()
IOptTypteDecl(id list type _name);

type name
:TypeName (id);

list id -list;
id list

*IdNil()
IIdPair(id id list);

id
Id~ull()

I d(IDENTIFIER)I;

Figure 6-4. Abstract Syntax

. completing term resides at each unexpanded occurrence of a phylum in a derivation tree.

The completing term of a list phylum differs in that the completing term is the singleton

list constructed by applying the binary operator to the completing term of its left argu-

ment phylum and to the list's nullary operator. Placeholder erms identify locations

where subterm may be inserted. The relationship of completing terms and placeholder

terms varks dependent upon the property declarations for a phylum. For ordnmy phyla

and list phyla the same term is both the completing term and the placeholder term. For

optional phyla the completing term is constructed from its first nullary operator. The

placeholder term is constructed from the first operator which is not used to construct the

completing term. For optional list phyla the completing term is constructed from the nul-

lary ,perator, and the placeholder term is the singleton list construed by applying the. list's binary operator to the completing term of the list's left child and to the list's nullary

term.

2. Unparsinlg Rules

The next step in constructing an editor is to define the display representation. The

display representation is described by a collection of unparsing rules. The unparuing

rules define the behavior of the editor with respect to the abstract syntax. This module

contains specifications for the display format and for denoting which nodes in the

abstract syntax tree are selectable and which productions of an object are editable.

The SSL form for unparsing rules is phylum : operator funparsing syntax] where

phylum and operator correspond on a one to one basis with the abstract syntax. The

unp-tring syntax includes a selection symbol which corresponds to the left hand side

67

phylum and a selection symbol for each node on the right hand side in the order in which *
the nodes occur in the abstract syntax.

There may be locations in the derivation tree which need not be visible to the user

of our editor. The selection symbol which denotes a node as a resting place in the

derivation tree is a @. We denote nodes that we do not wish to be selectable, which

means they are not resting places, by the selection symbol. The selection symbol for

the left-hand-side-phylum is separated from the right-hand-side-nodes by a : if we do not

wish an object to be editable, or by a ::= if we do intend for the object to be editable. A

node in the tree is an instance of two phylum occurrences. It occurs in the right-hand-

side and in the left-hand-side. If either occurrence is represented with a @ symbol then

the node represented the phylum will be designated as selectable otherwise it is not

selectable. This characteristic necessitates the development of another convention. The

editor designer should choose a convention for the insertion of resting places, either in

place for the left-hand-side phylum or the right-hand-side phylum. We chose the left-

hand-side phylum as our convention since the resting places were more easily recognized

and fewer @ symbols were required in the unparsing rules. The trade-off with this

choice is that if the editor-designer desires that a phylum be a selectable in one subtree

and not selectable in another subtree then the unparsing rules must be modified to

describe the right-hand-side occurrence as a resting place and the left-hand-side as not a

resting place. This occurs infrequently in our PSDL language.

The syntactic sugar of the language is interspersed within the unparsing syntax in

the form of tokens. These tokens are enclosed within double quotes. Display

68

.formatting such as newlines, tabs :nd back tabs may also be included within double

quotes. The SSI display formatting commands are shown in Figure 6-5.

Formatting Meaning
Conmmand

%t move the left margin one indentation unit to the right
%b move the left margin one indentation unit to the left
%n newline, rtur to the current left margin
% cetu rn to the current left margin &n overpint
%I move to column one of the same line and overprint
%T move right to the next tab satop
%M(c) move right to column c, where c ix a positive integer
%MocoptonA newline, return to the current left margin
%c sum aso, but either all or no in a group are taken
% beginning of an unpaing group
%{ end of an unparsing group
% sum as %t% o%(same as %%%) sum as %) %b

%S(style-name enter the named style
%S) revert to the previous style
%% display a %

Figure 6-5. SSL Display Fomating Commands

Another conventi.n &hould b- established with regard to the placement of tabs

and newlines. The consideration is whether to place the newlines in the front of the

unparsing rules or at the end of the unparsing rules, and the level at which to place the

tabs and the back tabs. The effect of the formatting commands for tabs and back tabs are

realized upon the next occurrence of a newline. We chose to place the newlines at the

front of the unparsing rules, and tabs and back tabs in the parent rules. The unparsing

rules for our PSDL subset are shown in Figure 6-6.

69

padl -componentz
r i1L1 (9:1

IPadfl'air (@:'("Inn)')
component

: lNoComponent I(:O(coponent)")
I OP (':"nOEKATOR 0'

IData (':"%nTYf "1

Id

ope rator Spe c
* OpSpoc (":OnSPECFXCATION~""bnKDJ ;

typ-S peac
* T'ypQSp*C (:"t"nSEcrCATION%t""*%b~nI4O 11

optional -nterface
* nterFacemil (W)

Xnterrac*List (6:O0)
optional requirmelts

* -.qnts~race4one (1:1
I eqantsprompt (20%"n(requirtiaental")
ReqnmtsTracc (0:OnBY KZQUXZHtNTS4t%n"'Pbw)

attribute
ZmptyAttr lU:"%n(int~rfac)*i
I nput l(:*flXNPUT""%t-Nu~b3
I Output (':*%nQUTUT"t"""%b"J 0

input
XnputTyp*DOCI :% n" b);

output
: OutputTyp*Dtcl :%n"b);

type de cl
*TypeDecl: "

optilonal. type declaration
*OptType~echIl1 (601~nioptional type declarati~on)")
IOptTypeDocl (:"n :W ;

type name
:TypeName(: ;

id-list
IdNil (:m

IdPair (g:(L 30

Figure 6-6. Unparsing Rules

70

3. Lexeme Declarations

The next step in the development of an editor is to defute the lexical rules. The

form of a lcxcrme declaration is phylum-name : lexeme-name < reuar-exprcssion >;

This declaration states that all strings generated by the given regular expression ae in

phylurn-nomn. The regular expression is separated from the closing ingle bhocket by at

least one blank character. The regular expression may contain embwded blank chars.

ters by explicitly escaping the blank with a back slash. The lexeme-nsne will be used in

the concrete iput definitions. The regular expressions permitted in the SSL lexeme

declarations am generally the same tegular expressions which are accepted by the UNIX

lexical analyzer generator lex. Figure 6-7 contains guidance for acceplable regular

expressions.

. Expression Meanin

c the character c
"clc2c3" the string clc2c3
[clc2c3j the character cl,c2 or c3
(cl-c2] any of the characters from cI through c2
['clc2c3] any character but cl,c2 and c3
e an e at the beginning of a line
$ an e at the edof air

C? anoptional e
CO 0 or more instances of e
e+ I or more instances of e
ele2 an el followed by an e2
elIe2 an el or an e2
(e) anc
cl/e2 an eI but only if followed by an e2
ejnl,n2) nI through n2 occurrences of e

Figure 6-7. Regular Expressions

71

Lcxcmc declarations fonn an ordered list. During lexical analysis in an editor,.

this order influences the recognition process. When more than one regular expression

matches a string, the longest match is selected. If several rules match with the samre

number of characters, then the first declaration which matched in the specification is

selected. The lexeme declarations for our PSDL subset are shown in Figure 6-8.

IDENTFI ER: ldentLex< ta-iA-Z (a-zA-Z,0-9]' >;

Figure 6-8. Lexeme Declarations

4. Attribute Declarations

The next step in the development of an editor is to define the attribute declara-

tions. The attribute declarations define the association between the abstract syntax and

the concrete inpuz syntax. SSL attribute declarations associate an attribute with the name

of a phylum. They also describe the type and the source of the attribute as either syn-

thesized or inherited. The form of an SSL attribute declaration is phylum (source attri-

bute type;); This file also contains entry declarations which establish the correspondence

between the selections in the abstract-syntax tree which are to be edited and the entry

points within the input syntax. Th1e form of an SSL entry declaration is p P.t;. This

example indicates that when a selected component of the program is a member of phy-

lum p, input is to be parsed to determine if it is a member of P. If it is, then attribute t

should be inserted in the abstract-syntax tree, and should replace the current selection.

The attribute declarations and their entry declarations for our PSDL subset are shown in

Figure 6-9.

72

Ident (synthesized id t;);
Id list (synthesized id-liat t;);

-d " Idt.t;
idlist - dliast.t;

Figure 6-9. Attribute Declarations

S. Concrete Input Syntax

The concrete input syntax of a language to be used for text editing is defined in

terms of a concret input grammar. It comprises the rules which specify the set of syn-

tactically well-formed strings, the structure of parse trees, and attribute equations that

*specify the translation of the parse trees into terms of the abstract syntax.

The attribute equations specify how values of synthesized attributes of the left-

hand side nonterminals are computed in terms of their inherited attributes an

synthesized attibutes associated with nonterminals on the right-hand side. They also

determine how inherited attributes of right-hand side nonterminals are constructed from

inherited attributes of the left-hand side nonterminals and from synthesized attributes of

left siblings.

The minimum syntax required ft- an editor must provide for all language con-

structs which are entered as text via the keyboard. Ultimately, the concrete input syntax

should recognize the entire language to permit the user to read existing objects into a text

file and then edit those objects. The concrete input syntax for our PSDL subset is shown

in Figure 6-10.

73

Wdent : (IDENTUXEZR)
{ Xdent. t ,- Xd (XDENTIFXZR) ;);

Xdliot ::- (Ident)

(Id liat.t - (Xdent.t::Id~iI);)
I (Ident ',' Id list)

(Id-1iat$1.t - (Zdent.t: :dliat$2.t); ;

Figure 6-10. Concrete Input Syntax

The left-hand side phyla name are separated from the right-hand side symbols

with a : : symbol. Single characters may be enclosed in single quotes on the right-

hand side of the parsing declarations, Different occurrences of the same nonterminal are

distinguished by appending a number, such as $1 and $2, which reflects their

occurrence in the rule. The second rle in our syntax specifies that a list of identifiers is

separated by a comma in the concrete syntax and that the lexeme values parsed are con-

catenated to a list (using the predefined concatenation operator ::) whose value is

stored in the synthesized attribute t of the nonterminal Id.list.

6. Templates and Transformations

The next step is to define the templates and transformations. Transformations

may define templates which are inserted whenever the selection is a placeholder or may

.compute a replacement value dependent upon the former value of the selection. We only

defined template transformations for our first editor. These declarations specify the res-

tructuring of objects when a current selection matches a given pattern. The general fokm

74

of a transformation declaration is transform A) on transformation-nam <WO> :

operator(<x!>,...,<vn>); , where transform and on ae SSL reserved words, operator is

an operator and A through xn ae productions in the abstract syntax. The template

transfonnations for our PSDL subset are shown in Figure 6-11.

transform component
on "type"

<component>
Data (<id>, <type spec>),

on "operator"
<component>
Op (<id>, <operator spec>);

transform attribute
on "input"

<attribute>
Input (<input>, <optional requirements>),

on "output"
<attribute>
Output (<output>, <optional requirements>);

transform optional requirements
on "enter requirements"

<optionalrequirements>
ReqmtsTrace (<id list>);

transform optional.type_declaration
on "enterdeclaration"

<optionaltypedeclaration>
OptTypeDecl (<id list>, <type_name>);

Figure 6-11. Template Transformations

E. DESIGN ISSUES OF THE COMPLETE PSDL EDITOR

The PSDL Syntax Directed Editor described here and used in CAPS is a very

simplistic editor with regard to the level of sophistication capable in an editor generated

75

from the Cornell Synthesizer. The simplistic design of our PSDL editor was intentional.

We have purposely turned off features which may normally be included in an editor gen.

crated from the Comell Synthesizer Generator. We have purposely documented only a

very small subset of the available editor commands, The subset of editor commands pro-

vided in our on-line documentation is sufficient to use the PSDL editor as we intended.

In an enviromnent which contains multiple tools which interact with the user, we believe

that the interfaces must be kept simple and should be as consistent amongst the different

tools as possible. We felt that the trade-off in the complexity of the editor's user inter-

face with the additional capabilities provided by the Cornell Synthesizer Generator was

not warranted for our application.

Our editor is consistent with the principle that a user interface should always provide

feedback for any user input. The display always changes in appearance any time the user

enters an editor command or any other keyboard input.

We have updated the PSDL grammar during the design and implementation of the

PSDL editor. There were four changes in the grammar which were not simple factoriza-

tions but that actually changed the meaning of the language. The first change simply

made the grammar more regular. PSDL primary objects such as operators and data types

have two parts: a specification part and an implementation part. The specification con-

struct begins with SPECIFICATION and ends with END. The implementation part

may consist of a psdl implementation or an ada implementation. The psdl implementa-

tion construct begins with IMPLEMENTATION and ends with END. The ada imple-

mentation construct began with IMPLEMENTATION ADA and contained an Ada pro-

gram. An ada implementation did not require an END to bracket the construct. We

76

.decided to change the granirar to require that an ada implementation end with an END

to increase the regularity and syntactic consistency of the language.

The second, third and fourth changes to the grarmmar involved a similar ismu. The

rules for d~ ~ Q b.ansand constraint, permitted that the smal-

lest correct use of the rules resulted in unsatisfactory conditions. The last three changes

to the rules resulted in required subsets of the original gramm. The rules which relate

to datajlfowiagram and control_..constraints are shown in Figure 6-12.

padi implementation

- 0 implementation" data flow diagram (streama) (timers]
icor,*:ol constraints) (±nformal-desc) "end"

data flow diagram
- graph" (link)

control constraints0 - *control constraints" (constraint)

Figure 6-12. Original PSDL Rules

The smallest correct psdI implemnentation. which resulted from these rules is shown in

Figure 6-13.

IMULMENTATION
GRAPH

END

Figure 6-13. Smaillest PSDL Implementation According To Previous Granrnar

'77

This yields an empty implementation. We decided that an envxy inplemenat*ion

should not be pennitted. The granunar was changed to require that a pug implemena-

tion contain at least one link statement. The change in the grammar is shown with its

corresponding smallest construct is shown in Figure 6-14.

data flow diagram
- "grZaph" link (link)

IMPLEMENTATION
GRAPH
id "." id [":" time) "->" id

END

Figure 6-14. Updated PsdI Implementation Rule And Its Smallest Construct

The control constraints constrct is optional in the psdl implementation rule. Fhvi-

ously when selected, it could consist of keywords only, as shown in Figure 6-15.

IMPLEME NTATION
GRAPH

id "." id [":' time] "-)" id
CONTROL CONSTREMITS

END

Figure 6-15. Smallest Control Constraint According To Previous Grammar

We changed the PSDL gramrr~r so that if a control constrain constc was selected,

then the construct must contain at least one constraint. The current control constraint

rule and its smallest corresponding result are shown in Figure 6-16.

IMPLEMENTATION
GRAPH

id R." id (":" time) -> id
CONTROL CONSTRAINTS

OPERATOR id
END

Figure 6-16. Current Smallest Ccarol Constraint In Context

The fourh change in the grammar concerned the triggered option in the constraint

rule. The problem we found with this rule was similar to the problem with the previous

*smallest constraint rule. The previous constraint rule nd an exanple of the smallest

construct using the triggered option is shown in Figure 6-17.

constraint
- "operator" id

["triggered" (trigger] ("if" predicate] [reqmts trace))
("period" time (reqmts trace]]
["finish within" time (reqmts_trace)]
(constraint-options)

CONTROL CONSTRAINTS
OPERATOR id
TRIGGERED

Figure 6-17. Previous Triggered Option

* 79

We chaoged the triggered option so that if it was selected it requires either a triger

or an optional trigger followed by a required "i" predicate. The current constaim rle W
with the smallest possible triggered options are shown in Figure 6-18.

constraint
- "operator" id
("triggered" (trigger I (trigger) "if" predicate) (xeq -ta.trace))

("period" time (reqmts trace))
("finish within" time [reqmtotrace))
(constraint options)

CONTROL CONSTRAINTS
OPERATOR id
TRIGGERED
BY ALL a,b

CONTROL CONSTRAINTS
OPERATOR id
TRIGGERED
IT a - 0

Figure 6-18. Current Triggered Option

The complete PSDL Grammar shown in Appendix A is the updated grammar which

reflects the changes we have described. The implementation of our PSDL editor is con-

tained in Appendices G through L.

F. INTEGRATION

The files which comprise the functional components of the PSDL editor and related

documentation files reside mostly in the directory /n/suns2wokcicaps/syntax-editor.

These components are:

80

pev executable terminal psdl editor
pew executable sunview psdl editor
psdl.as.ssl abstract syntax for psd editor
psdl.ad.ssl attribuo definitions for psdl editor
psdl.ci.ssl concrete input for pull editor
psdl.lex.ssl lexical file for psdi editor
psdl.tt.ssl template trmsfonnations for psdI editor
psdl.up.ssl unpazsing nles for psdl editor
Makcfile shell script tw generate an executable PSDL editor

from the psdl.*,isl xpecifications.

An additional file which initializes the syntax directed editor it:

/n/suns2/work/cps/.syn_profile

The on-line manual page instructions for pev is located at:

/n/suns2/usrfinlmxa/pe.l

The Comell Synthesizer Generator is located at:

/n/suns2/usr/suns2Aocal/syn

When the syntax directed editor is required the user interface creates a new process

which executes the PSDL editor concurrently with the user interface and any other poten-

tially active processes. When the designer saves the PSDL prototype from within the

editor it is initially saved in the caps directory. The user interface directory currently

simulates the design database and the software database.

G. USING THE PSDL EDITOR

When a user selects the syntax directed editor from within the CAPS construction

menu, he is given the option to view the on-line user's manual. If instructions are

requested, then the following description is provided using the UNIX man facility. These

instructions may also be accessed outside of CAPS by executing man pe.

NAME
pe - PSDL syntax directed editor

SYNOPSIS
PC

pe. is a syntax directed editor for the prototype system
deripition language (PS DL). This editor was designed to be
used within the Computer Aided Prototyping System (CAPS).
The editor provides a simple, mostly rtgular user interface
which goides tht user painlessly through the structure of a
correct PSDL program.

There vre 3 primary modes of interaction with the editor.

Each miode is visually distinctive.I

1. Required Keyboard Input is denoted by a token contained
iii angle brackets, such as <identifier>.

2, R~equiredI Consinict Choices ame contaied within square
brackets, such as (implemnentation]. When a construct choice
is required, the user selects an alternative by pressing the
tab key followed by typing the alternative or typing an
unamnbiguous prefix for the altemnative,

3. Optional Construct Clhoict-. Pm. contained within braces,
such as (d~escriptioni). The. user inay select An optional
construct in the exact same mnannr as a required choice. The
user may pass-over an optional construct by pressing the
return key.

STRUCTURE TRAVERSAL
The current Imition within the structure of a PSDL program
many be changed by the following:

^N - next required construct,

AM or return - next construct, required or optional.

^- previous required construct.

^H or backspace - previous construct, required or optional.

82

. KEYBOARD INPUT
TIe current position while entering a particular text item
via keyboard input may be chinged by the following:

DEL - Delete previous character.

'D - Delete current character.

F - Move the cursor one character to the ight.

B - Move the cursor one character to the left.

SAVING THE PROTOTYPE
Once the prototype description has been entered the file may
be saved with the following method:

AXAW - a forms display appears at the bottom of the screen.

The cursor is positioned at file-name. Enter the name
psdl.text..Press the tab key. The cursor is positioned at file-
type. Enter the type text.

Press the tab key again, and enter ESC s to execute the
coamnd.

The file has been saved and the forms display is cleared
from the screen.

EXITING THE EDITOR
The editor is exited by typing ^C.

AUTHOR
Laura J. White

FILES
/caps .syn.profile default parameters for the psd editor
/caps/syntaxeditor/pev terminal pall editor
/ctps/syntax..editor/pew sunview pdi editor
/caps/syntax_.editor/psdl.as.ssl abstract syntax for sdi editor
/caps/syntax..editor/psdl.ad.ssl ttrihjte definitio.is for podl editor
/caps/syntaxeditor/psdl.ci.ss1 concrtte input for pedl editor
/caps/syntax-editor/psdl.lex.ssl lexcal. file for psdl editor

@ R3

Icaps/syntax..editor/ps(l.tt.ssl template transformations for psdl editor
Icaps.synti.axditorpscdl.up.ss. unparsing nilcs for psdi editor

SEE ALSO
White, L. J., ''he Dcvclopnxnt of a Rapid Probotyping Environmcnt,
Mastcr's Thesis, Naval Postgraduntc School, Monterey, California,
Dcemrbcr 1989.

BUGS
The text part of the PSDL granmmr has not been implemented.
ldcntifier is currently used in place of text.

Some of the constructs remain nt the current location,
instead of advancing forward after a selection is made. The
visibility behavior of optional constructs within some con-
structs is still "mysterious" in .nome instances. This must
be con-cc,'d before a sunview editor implementation will be
use....

Name analysis and type checking is not performed in the
current version of pC.

A sample editing session for the construction of a simple prototype is described

within the rest of this section. We will show the contents of the video screen as the edit-

ing session progresses. Whenever a user presses a tab the comand input prompt

appears at the top of the screen. The middle of the screen contains the program. The

current position in the abstract syntax tree is displayed on the bottom line to the lcft. If

conmmd mode options are available, they appear to the right of the Positioned at

display. An option may be selec:ed by entering an unambiguous prefix at the prompt or

passed over by pressing the return key. Figure 6-19 contains tha contents of the video

screen once t syntax directed editor is started and initialized.

84

eI

*?

Positioned at padl compontnt : type operator

Pigue 6-19. Sample Editing Session

We pressed the tab key to obtain the ed.or's commamd pront. The conumnid

prDm appears at the top of the display as shown in Figure 6-20.

COMMAND:

Poai.tioned at pdlicomponents type operator

Figure 6-20. Sample Editing Session

* 85

At this point, we entcred the unanbiguous prefix 'o' for an operator component. The

command prompt disappears wul the template for an operator compo-..nt is displayed as

shown in Figure 6-21.

OPERATOR <Wlenlker>
3PECIXC 'ATION

(operator implmentation)

Positioned at id

Vigre 6-21. Sample Editing Session

We then entered the identifte nawM, for the operator as shown in Figure 6-22. After

the identifier name is entered, the placeholder for an optional interface construct appears.

'v choices for an optional interface construct arm displayed on the bottom of the screen.

OPERATOR cperator..
SPECXCATION

[operator implementation)

Positioned at optional interface input output states generic
exceptions timing info

Figure 6-22. Fample Editing Session

86

We now chose to describe an input so we pressed the tab key and entered the unam-

biguous prefix 'i'. The display was updated with the iput construct as shown in Figure

6-23.

OPERATOR operator 1
SPECIFICATION

INPUT

<Idadler> : -dentffiw.>
END
(operator implementation)

Positioned at id list

Figure 6-23. Sample Editing Session

.After we entered the identifier name of an input and its type as shown in Figure 6-24,

the optional placeholder for a generic actual parameter is displayed.

OPERATOR operator_1
SPECIFICATION

INPUT

x : integer (Swr*dctual pwamters)
(requirements)

END
(operator implementation)

Positioned at optionalgeneric actuals enter genericactualparameters

Figure 6-24. Sample Editing Session

* 87

At this time we did not wish to specify any generic parameters so we pressed the

return key to pass over this option. An optional placeholder for more_typedecls

appears. We do not wish to specify any more inputs for our operator, nor any require-

ments for our input so we pressed the return key two more times. PSDL allows zero or

more interface constructs so the interface option appears again as shown in Figure 6-25.

OPERATOR operator 1
SPECIFICATION

INPUT
x : integer
(Interface)

END
[operator implementation)

Positioned at optional interface input output states generic
exceptions timing info

Figure 6-25. Sample Editing Session

We choose to enter timing information for our operator so we press the tab key, enter

an unambiguous prefix 't' and press return. The placeholders for the optional timing con-

structs appear, and we are positioned at the first choice as shown in Figure 6-26.

88

OPEPRkTOR operator31
SPECIFICATION

INPUT
x :integer
(WA)
(mcp)
(mrt)
(requirementsj

END

(operator implementation]I

Positioned at optional-met enter MET

Figure 6-26. Sample editing Session

We chose to enter a MET so we pressed the tab key, entered an 'e' at the command

prompt and pressed return. The MET construct replaces the optional placebolder and we.are positio integer as shown in Figure 6-27.

OPERATOR operator 1
SPECIFICATION

INPUT
x : integer
MAXIMUM EXECUTION TIME <We">
(mcp)
(mrt)
(requirements)

END
(operator implementation]

Positioned at integer

Figure 6-27. Sample Editing Session

89

We entered a value for the time constraint and pressed return. The optional unit

placeholder appeared as shown hi Figure 6-28.

OPERATOR opezator)1
SPECIFxCATIOm

INPUT
x : integer
MAXIMUM jZXECUTION TIME 10 (nW})
(mcp}
(mrt)
{ requirements)

END
(operator i'mplementationl

Positioned at optional-unit milliseconds seconds minutos hours

Figure 6-28. Sample Editing Session

We selected milliseconds as our units by pressing the tab key then entering the

unambiguous prefix 'nail'. After that we chose not to enter any more timing information

or any requirements so we pressed return until we were given the opportunity to enter

another interface construct. We chose not to enter any more of these so we pressed the

return key again. We are now positioned at an optional keywords construct as shown hi

Figure 6-29.

90

OPERATOR oper~ator I
SPECIFICATION

INPUT
x :integer
HAXIHUM EXECUTION TIME 10 MS
(keywords)

END
(operator im~plementation)

Positioned at optional-keywords enter-keywords

Figure 6-29. Sample Editing Session

We chose not to enter any keywords so we pres&.d the return key. An optional

. description placeholder appeared which we passed over. After that, an optional axioms

placeholder appeared which we also pru~ed over. We were then positioned at an opera-

tor unplemnentation as shown in Figure 6-30.

OPERATOR operator_1
SPECIFICATION

INPUT
x : integer
MAXIMUM EXECUTION TIME 10 MS

END
(operator Imp eujWag.)

Positioned at operator _impi padi_implementation ada implemntation

Figure 6-30. Sample Editing Session

We scectd a psdl implementation and the appropriate template for the implementa-

tion appeared as shown in Figure 6-3 1.

OPERATOR operator.1
SPECIFICATION

INPUT
x : integer
MAXIMUM EXECUTION TIME 10 MS

END
IMPLEMENTATION

GRAPH
<Ienf1Aer>. <identifier>-><identif ier>

(data 3tream)
(timer)
(control constraints)
(description)

END

Positioned at id

Figure 6-31. Sample Editing Session

At this point we could continue to describe the implementation of our operator in the

same manner as we did with the specification part, but we chose to exit the editor.

The PSDL editor uses a very small subset of the capabilities provided for an editor

using the Cornell Synthesizer Generator. Simplicity and ease was a primary goal for our

editor. This goal caused us to intentionally design our editor so that a very small subset

of traversal commands would be required to use the editor effectively.

92

. H. FUTURE WORK

The following items were either not completed in the initial draft of the editor due to

time constraints or were identified as a result of testing.

1) The text rule in the PSDL grammar still requires implementation.

2) The concrete input syntax should be expanded so that a complete PSDL program may

be parsed. An existing file can only be read into the syntax directed editor if concrete

input syntax has been specified for the complete grammar.

3) Name analysis and type checking still require implementation.

4) The video version of the PSDL editor highlights the locator and the placeholder. The

highlighted locator is a feature provided by the Comer Synthesizer Generator. This

feature is inconsistent with the editor we designed and confuses the user. The locator

. should not be visibly displayed.

5) The inconsistencies with placeholders must be corrected to provide a useful editor

which provides a Sun version of the editor which utilizes the mouse, pop-up windows

and scrolling windows. Once these inconistenjes are eliminated, the editor designer

need only recompile the editor specifications with a SUN option fag or a X option flag in

the Makefile to provide a graphic interface.

6) The current version of the editor has been integrated into CAPS in a very simple

manner. More sophistication in terms of its interaction with the design database,

software base and the graphic editor is necessary to meet the requirements of the current

design.

93

VII. THE SOFTWARE DATABASE SYSTEM

The Software Database System consists of the following tools:

- the Design Database
- the Software Base
- the Software Design Management System

This system provides for the utilization of reusable prototype designs and reusable

software components during the rapid prototyping process. These tools have not yet

been integrated into CAPS. This is an important area which requires follow-on design

and implementation. This chapter is included here for completeness in describing the

development of our environment.

A survey of existing database management methodologies and systems has been

conducted to detemine the primary features required to support our software database 0
system. Feasabiity studies have also been conducted to refine the requirements and

interaction within CAPS using one selected database management system.

A. REUSABILITY

The key motivation for our software database system is reuse. The benefits and

advantages of reusability include:

- improved software quality and maintenance
- increased programmer productivity and efficiency
- faster software development
- lower development costs

94

. Galik (13] provides us with a brief synopsis of the following areas of research

regarding software reusability:

- reusability and abstraction
- Ada and reusability
- the Ada software repository
- object-oriented programming and reusability
- a keyword based retrieval system
- a reuiable software library
- classification and retrieval
Galik found that researchers generally agreed that a greater use of absaction

resulted in greater reusabiity. Parmas [30] notes that information hiding and abstraction

generally produces software that is well-defined and well-documented, which tends

towards reusability.

Reusability was a primary concern in the design of the Ada programming language,

which supports both abstraction and information hiding. Ada separates the interface

specification of a program unit from its implementation. These specifications determine

how program units may be reused. Both the specification and the implementation parts

may be reused. Ada provides a package subprogram which strongly supports the

development of abstract data types. A key feature of Ada is the generic unit which is the

primary mechanism provi&d in the language for building reusable software components.

The Ada Software Repository [31] is a public-domain collection of Ada programs

and information. The software components are categorized by their high level applica-

tions. A programmer must sc-n an index, then browse each of the potential candidates

for its iuitabiity. This can be a very time-consuming process.

95

Johnson and Foote (32] state that object-oriented prcgramming promoxes software

reuse. Tlicy state that class definitions provide modularity and information hiding which

supports reuse. Class inheritance supports reuse by permitting classes to be modified 7o

forn subclasses.

Matsumoto [33] desr,'ocs an object-oriented retrieval system being developed which

is a simple keyword L I system. A synonym library provides a standard nornalized

keyword for retrieval ba-d on user input.

A Reusable Software Library (RSL) has been developed at Intembetrics, Inc. The

RSL [34] is comprised of the RSL database and four subsystemrs which are:

- a library management subsystem
- a user query subsystem
- a software componenent retrieval and evaluation subsystem
- a software computer-aided design subsystem

This library classifies components by a set of attributes. Retrieval is an interactive

process which identifies components which perform a desired function. The user assigns

relative importance to the attributes of the components and the system evaluates and rates

components based on the user's needs.

Prieto-Diaz and Freeman (35] state that the proper caosification of reusable software

components is the central issue in making reusability an attractive approach to software

development. They propose an integrated classification scheme that is embedded within

the retrieval system. An evaluation mechanism is provided to help users discrimnahte

between similar components in the software base and to allow users to select components

which will require minimal modifications. Their algorithm is shown in Figure.7-1. 'This

algorithm provides ie basis for our design in retrieving reusable components in CAPS.

96

begin
search library
if identical match then

terminate
else

collect similar components
for each componenet corn

compute degree of match
end
rank and select best
modify component

endif
end

Figure 7-1. Code Reuse Process

The classification scheme proposed by Prieto-Diaz utilizes a description of softare

components with a sextuple containing attributes which capture the functional charac-

teristics of the component.

B. REQUIREMENTS

The requirements for our software database system were defined to provide the fol-

lowing capabilities:

- to store PSDL designs and software components
- to retrieve designs and software components for editing
- to retrieve designs and software components for review
- to delete designs and software components
- the CAPS user interface should interact with the software

database system in such a way that the software management system
is transparant to the protoype designer.

C. SURVEY OF DATABASE MANAGEMENT TECHNOLOGIES

Relational, Hirachical, Network and Object-Oriented databrse management systems

were evaluated by Calik. He found that the first three did not support efficiency or pro-

ductivity due to the following characteristics:

- fixed set of structures and operations
- limitations of a fixed set of predefined types
- redundancy of data
- lack of abstruction capabilities
- schema not easily modifiable

The object-oriented database management systems attempt to provide facilities

which permit the definition of any structure or operation rather than a fixed set. Proper-

ties of an object-oriented database management system include:

- abstraction
- extensibility
- persistency
- active data

The object-oriented approach was selected as the most suitable technology for the

implementation of our software database system. Within this type of system an object is

considered as a description of an entity in some application domain. It may be a simple

atomic representation or a composite structure. An object has a unique identifier and a

set of operations which are defined for that object. Objects which are similar ere grouped

into classes. A class is also considered as an object. Class hierarchy and inheritance of

properties permits the definition of subclasses which may inherit all properties of the

class but may have additional local properties.

Vbase, a product of Ontologic Inc. was selected for CAPS. Vbase runs in the Unix

environment on Sun workstations. The Vbase system consists of the following

98

.components:
- the Vba.e Databise of persistent objects
- the Type Definition Language (TDL) provides the data model or

conceptual schema for applications
- a C Object Processor which is the Vbase data manipulation language
- an Integrated Tool Set (ITS)
- an Object SQL which is the query facility for the retrival of objects

The process of defining a typical database design includes:

- Jefine the objects
- define the properties of the objects
- define frequent operations performed on objects
- describe the objects and their properties in TDL
- compile and debug the TDL definitions
- develop COP routines which hnplement the defined operations
- compile and debug the COP programs

Galik and Douglas successfully implemented Vbase systems for the storage and

retrieval of objects in the software base and the design database.

D. FUTURE INTEGRATION

We currendy divide the software design management system into two COP com-

ponents, one for the software base and one for the design database. The pwpoe of the

design database and the interaction between the designer and the design database requires

further refinement. This process has not been extended beyonid the description provided

by Douglas. We have extended and refined the design for the integration of the software

database system from that previously described by Galik.

The software design management system for Ada components and the Vbase data-

base of reusable Ad& software co-mponents should reside in the directory

/caps/softwarebase. The software design management system for PSDL prototype*

spccifications and the Vbtse database of reusable prototype designs should reside in the

ircCtorTy /caps/dcsigndatabase. The implementation defined filenames used in the

feasibility studies, am suitable for the integration which we have currently defined. These

files should exist as temporary data components with lifetimes based on their applicabil-

ity.

The input rite for the software base retrieval is currently a PSDL specification part

and the output is an Ada component. The input file for a design database retrieval

currently contains the desired properties of a PSDL description and the output is a com-

pletc PSDL description. We will describe the interaction of the software design manage-

ment system in the context of constructing a prototype from within the graphic editor.

When a designer selects the graphic editor from the construction menu in the user

interface, both the user interface process anti the graphic editor process remain active.

The designer may describe a prototype using a single operator. If the designer wishes to V
determine if a reusable Ada component already exists in the database for the operator just

defined, then he selects the search button in the graphic editor. The search function

should call the store function which will cause a file NewNode.OI to be created which is a

PSDL specification for the operator. The search function should make a copy of the

PSDL specification into the file PSDL.SPECS. The search function should then execute

the COP program which represents the database management system for the software

base. If a match is not found in the software base, then the search function should

remove the temporary file PSDL SPECS and cause a message to be displayed in the mes-

sage panel which states that a match was not found. If a match is found, then that reus-

able component now resides in the file SBOUT and the search function should open a

100

* popup window which overlays the top portion of the graphic editor. This window should

not overlay the message panel or the drawing space. If a single match was found, then a

statement which reflects that case is displayed and the designer is given an option to

browse the component, edit the component, save the component or to quit the search pro-

cess. If the designer chooses to browse the component, then the command more

SB OUT is automatically executed within the popup window. If the designer chooses to

edit the component, then ideally an Ada syntax directed editor should automatically be

executed on the file SB OUT within the popup window. If the designer chooses to save

the component then the modified component should be stored so that the designer may

choose to discard it or add it to the software base during the quit process of the user inter-

face. The component should also be appended to the file SBPACKAGE which will be.referenced by the translator during the execute process. If the designer chooses to quit

the search process, then the files PSDLSPEC and SBOUT are removed and the pop-up

window is closed.

The designer continues the construction and search processes until a complete PSDL

description is represented by a tree which contains Ada components at all of its leaves.

101

VI1. THE TRANSLATOR

A. PREVIOUS DESIGN

Tle purpose of the translator is to produce an Ada translation of a PSDL prototype

description. The translator performs lexical analysis of the internal textual representation

of a PSDL system prototype, parses the prototype description and constructs an abstract

syntax tree, and then evaluates the attributes of the tree to provide an Ada representation

which utilizes PSDL abstract data types.

An Ada translation is a template with five major sections derived from the PSDL

input program:

- exception declarations
- atomic operator driver headers
- atomic subprograms
- PSDL operator specification packages
- PSDL atomic operator driver subprograms

TIhe exception declarations define the PSDL._EXCEPTION data type and all of the

PSDL exceptions which may be raised in a PSDL program. The atomic operator driver

headers are the interfaces for the subprogram names which will be called by the static

and dynamic schedules. The atomic subprograms section contains all of the atomic level

Ada code drawn from the reusable software base or entered by the designer during the

construction of the prototype. The PSDL operator specification part contains Ada pack-

age specifications for all of the composite PSDL operator specifications. The PSDL

atomic operator drivers are Ada subprograms which execute the atomic subprograms in

102

* tcrns of the PSDL control constraints specified for each operator. The Ada package tem-

platc is shown in Figure 8-1 (14].

package Tb is

type PSDL ..EXCEPTX N is (pdl excpl, psd1 excp2,..., psdlexcpN;
excpl, excp2,...t excpN exception;

procedure atomic dviverl:

procedure atomicdriver2;

procedure atomlc driverN;

and TL;

with PSDLSYSTEM;
use PSDLSYSTEM;

package body TL is

.atomic procedures drawn from the software base

PSDL operator specification packageS

PSDL atomic operator driver procedures

end TL;

Figure 8-1. TL Package Template

103

T'lie PSDL abstract data types implemented for the translator are:

-data strcamis
- state variables
- timers
- exceptionis

There are two kinds of data streams in PSDL sanpled streams and data flow streams. A

smnpled stream is a data stream which has a persistent data value until it is overwritten

with another value. When a value is read from a samnpled stream, the value remains on

the sampled stream. A data flow stream is a data stream which may only be written if the

stream is empty and can only be read when a value exists on the data flow stream. Read-

ing the value of the data flow stremn consumes the value. Data streams have two defined

error conditions, BUFFER_UNDERFLOW and BUFFEROVERFLOW. The first error

occurs if an attempt is made to write onto a data flow stream which has a value. The

second error occurs if an attempt is made to read an uninitialized sampled stream or an

empty data flow stream. The four different PSDL constructs which declare data streams

are:

- input attribute
- output attribute
- states attribute
- streams

State variables are data streams which are automatically initialized.

A timer is a built-in data type which behaves as a simple digital stopwatch used to

measure elapsed times. The operations available on timers include:

-start
- stop
-read
- reset

104

.A limer may be represented by a state machine which has three states as shown in Figur

8-2 [14].

RESET START STOP

STOP RADSTOAREAD

SINITIAL SATRNIG SO TPE

STATE RESET STATE START STATE

' RESET

Figure 8-2. Timer State Machine

The read operation does not cause any change of state. A timer may be read at any

time regardless of the current state. The value returned when reading a timer is always

the amount of time that a timer has spent in the rut, aig state since the last transition

from the initial state.

PSDL exceptions are special data types which may be written to any data stream

without regard for the data stream's normal data type.

0 105

B. PREVIOUS IMPLEMENTATION

The translator is comprised of two main modules: the Kodiyak translator

specification and the Ada package which imnlements the PSDL abstract data types.

The translator specification was implemented using the Kodiyak translator generator.

Kodiyak is a UNIX based tool which was built on top of LEX and YACC. A Kodiyak

programu has three distinct parts. The first part provides the lexical rules for the source

language. The second part provides the declarations for the attributes in the abstract syn-

tax. The third part provides the attribute equations which are used to determine the

values of the attributes in the abstract syntax tree. Four passes of the abstract syntax tree

are performed. A pass is defined as a traversal from top to bottom or from bottom to top.

The first pass is a depth-first traversal of the tree from the root. Pass one collects the

following information for each node in the tree:

- all operator naunes and their parent names
- all data stream z-unes and whether they are sampled or data flow streams
- all excepions declared in the program

The second pass traverses the tree from the leaves back to the root. The information

determined for each node during pass one is synthesized up to the root. This information

is collected in the Kodiyak data structure for a map. The global map contains the contex-

tual data of the PSDL program.

The third pass routes the global map created in pass two back down the tree to start

the translation process. Translation occurs at each node in the tree. The translations are

to strings of Ada code. The leaves of the tree inherit the Ada translations.

106

The fourth pass collects the Ada translations from the leaves of the tree and con-

structs composition groups of translated Ada code. When the fourth ps reaches the oot

of the tree, then all the translation information is stored in the root.

C. MODIFICATIONS

We modified the design described by Altizer to improve the efficiency of the transla-

tion and compilation processes. This design modification has not been implemented at

this time, The tLser interface was to insert the actual source code for reusable com-

ponents which were used in the construction process into the Ada translation. It has

since been realized that this should not be necessary. The reusable components shmuld

have source views and executable views. The designer may use the source views during. the construction phase but then the executable views should be formed into a package

which will be linked with the translator when the final executable prototype is created.

The package of reusable components should have a unit name, such as SB PACKAGE,

and the translator must contain an Ada WITH S. PACKAGE statement. This means

that generic reusable components are instantiated and compiled when selected during the

construction phase.

We also modified the implementation of the translator to requie and recognize the

END statement which brackets the PSDL IMPLEMENTATION ADA statement. This

was necessary due to the design modification of the PSDL language which we described

in chapter six.

107

D. INTEGRATION

The components whic comprise the translator are contained in the directorY

/czps/uransiator. 'lieso files are:

triislatorok kodiyak translator specifications
psdl system.a Ada implemcntation of PSDL abstract data types

The data components which are used as input to the translator and the output produced

by the translator are stored in the directory /caps/prototypes. These files are:

psdl.txt input
tl.a output

"The Kodiyak Compiler resides in the subdirectory Kodiyak. An executable traslator

may be generated with kc translaor.k in the subdirectory. The executable translator will

have the file nanie translator. The executable translator must be moved to the parent

directory.

The on-line manual page for Kodiyak is located at:

/n/suns2/usr/suns2/manmianllkodiyak.l

The translator specifications and te Ada implementation of the PSDL data types wi-

contained in Appendices M and N.

108

IX. THE STATIC SCHEDUER

A. PREVIOUS DESIG N

Th)e purpose of the Static 3cheduker is to schedule the PSDL operators in a prootype

&escription so that the time constraints arm satisfied during execution. If a feasble

schcdult exists, then the Static scheduler creates an Ad& program which controls the exe-

cution of these operators, A data flow diagram for the static scheduler is shown in Figure

9-1.

PSOL A1OMr-M
POOSMD~OCOx.. hMt

auuCK"M

Figur ~ED1 ttc ceue

EXCMW"

* 10=

'lic Prcp~roccsor reads ant internal textual PSDL file and outputs a file which con-

lains a list ofT all Comiposite and atomic operators with their relevant characteristics such

as their timing constraints mitd link information.

Thei Dcconiposcr reads the output of the preprocessor and creates a file which only

contains thc atomic operators mid their relevant characteristics.

Thc rFile..yrocessor reads the filti of atomnic operators and creates a graph structure

which represents all of the atomic operators with critical timing constraints. It also

creates a file which lists the atomic operators without critical timing constraints.

The Topological_$orter uses the graph structure created by the !Iile..Prccessor to

build and output a precedence relationship that specifies which operators mv~t complete

their execution before other operators may start executing. This precedence mlationship

is always cleteiined but is only used by somec of the scheduling algorithms.

The 1-amionic..Block..Bui!dcr calculates the periodic equivalents of the sporadic

operators which have no defined periods. Thlen it checks if a harmonic block can be

found for a single processor. If a harmnonic block is found then it calculates and outputs a

harmonic block length.

The Operators..Scheduler uses the graph structure, the precedence list and the har-

monic block length to determine if a feasible schedule exists. If a&schedule is feasible,

one of six schecduling algorithms may be used to build a zchedule.

Thle Except ion.Handler manages the exceptions which pertain to critical operators

scheduled by the static scheduler.

110

The static scheduler produces two outputs. One output is an Ad program which

contains a schedule for all of the opetators in a software system prM;,ypt with crtilcal

timing constraints. The other output is the file which contains the names of the atomic

operators in the prototype which do not have any critical timing constraints.

S. IMPLEMENTATION

The static scheduler has been described and incrementally implemented by Marlowe

(15) and Kilic [16]. The static scheduler pmeprocessor was implemented with Kodiyak

specifications. The details of the Kodiyak Compiler were described in the previous

chapter. The output of the preprocessor will be processed to produce an output which

only contains atomic operators. An example of the atomic operators and their

. corresponding graph structure which would be created by the file processor are shown in

Figure 9-2. There ae cunendy three of six scheduling algorithms implemented in the

static scheduler. The three algorithms which have been implerteuned are:

the harmonic block with precedence constraints scheduling algorithm
- the earliest start scheduling algorithm
- the earliest deadline scheduling algorithm

The three scheduling algorithms which remain to be implemented are:

- the fixed priorities scheduling algorithm
- the minimize maximum tardiness with early start 'ines scheduling algorithm
- the rate-monotonic priority assignment scheduling algorithm

These algorithms are explained in detail by Kilic. He implemented the static scheduler

as a stand-alone tool which required modifications when integrated into CAPS. The pri-

mary capabilities of the two versions remain the same.

~111

ATO, H IC LINKR

OPI a
MET OP I
10 0
PERIOD OP .2

200 LX g
ATOMIC b a C
OF_2

HET 0
10 O
PERIOD bLOV P O
200 d
ATO4C Q,.3
OP3 0
MET OP
is LINK
PEr rOD c
200 jp.2
ATOMIC 0
OP4 0.P3
HET
15
PERIOD
200

Figure 9-2. Decomposer OutputAnd Graph Structure

C. MODIFICATIONS

The input to the static scheduler's preprocessor is a PSDL prototype description.

The Kodiyak specifications for the preprocessor were modified to reflect the change in

the PSD3, grammar described in chapter six, An END statement is required to bracket an

IMPLEMENTATION ADA statement.

The Ada implementations were modified to better serve the purposes of an integrated

tool within CAPS. An algorithm selection menu and several of the notification messages

were removed. The current design of the static scheduler in CAPS which interacts with a

112

. designer applies the different scheduling algorithmns in an implementation defined order

until a solution is found or until all algorithms have failed to produce a schedule.

During the integration and testing of the static scheduler three major areas were

identified for future modifications. The first is to develop some selection mechanism

which matches the prototype design to an optimal scheduling algorithm. The selection of

an algorithn will still remain transparent to the designer, but should become more

efficient if the order of the algorithms arm selected more intelligently. The second is that

the decomposer module still remains to be implemented. Another area of future work

which was originally identified by Marlowe is to define an algorithm and implementation

which determines a harmonic block length for multiple processors.

. D. INTEGRATION

The components which comprise the static scheduler arc contained in the directory

/caps/staticscheduler. These files are:

decomposer_b.a - validates and decomposes output of preprocessor
decomposer._s.a - validates and decomposes output of preprocessor
driver.a - interface for stand-aloe static scheduler
e_handler_b.a - exception routines used by driver
ejhandler._s.a - exception routhws used by driver
files.a - global types and declarations for all ss prograns
fp.b.a - file processor
fps.a - file processor
graphs-b.a - generic type graph structure
graphs..s.a - generic type graph structure
hbb-b.a - harmonic block builder
hbb...s.a - harmonic block builder
kc - script to compile static scheduler preprocess pre.ss.k
press - executable preprocessor
prejs.k - kodiyak specifications for preprocessor
scheduler_b.a - operatorsjscheduler
scheduler.s.a - operatorsscheduler

113

scqiuencc.,b.a - generic type list structure
SC(juCIICCS;.a - gencric type list structure
static..scheduler - excutble static._..cheduler
t...sortjbda - topological sorter
It-s 0 n .. a - topological sorter

Trhe Kodiyak Cempiler resides in the subdirectory /,caps/;statiqch..cduler/Kodiyak.

The preprocessor is generated by compiling with kc pre..ss.k in the Kodiyak subdirec-

tory. The executable preprocessor pre,..ss must be moved to the parent directory

/cflps/Static..sccdllcr.

The user interface executes pre..ss with the commuand line equivalent:

prcess <file namne> -o operator.info

The Ada components of the stat ic..scbeculer are compiled by:

amake static..schecduler -f *.a -o static...schcdulcr
(where *.a uses all files listed above which have a .a suffix)

The static..schecdulcr is executed in the user interface by the commnand line equivalent:

statiqc.schecduler

flles.a is dependent upon:
vstrings
sequences
graphs

decomnposcrj.b.a, deconiposer..s.a, cjiandler.b.a, ejiandler..s.a,
fp...b.a, fp...a, Iibbb.a, hibb..s.a, sclicdulerb.a, scheduler _s.a,
L-sortj..a, t..sorts..a are all dependent upon:

files (files.a)

driver.a is dependent upon
decomposer (decomposerb.a, decomnposr..s.a)
exccptionjhandler (ejihandlerj.a, ejindlr..s.a)
file,..processor (fp..b.a, fp-s.a)
hiannonicjblockbuilder (hbb b.a, libbs.a)
operator..scheduler (scheduler..b.a, scheduler..s.a)I
topological..orter (t.$ort..b.a, Lsort..s.a)

114

. press creates opcrator.info
decomposer reads operator.info and creates atomic.info
File-processor reads atomic.info
Fileprocessor creates non.crits
Operatorscheduler creates ss.a

The components which comprise the static scheduler are contained in Appendices 0

through AE.

~115

X. THE DYNAMIC SCHEDULER

A. PREVIOUS DESIGN

The purpose of the dynamic scheduler was to coordinate the execution of all opera-

tors and their debuggers during the execution of a prototype. The static schedule, the

non-time-critical operators and the debugging system were all components of the

dynamic scheduler.

B. MODIFICATIONS

There was not any previous implementation of a dynamic scheduler. The previous

design of the dynamic scheduler has been modified so that it only creates a schedule for

the non-time-critical operators of a PSDL prototype description. A file which lists these

operators is provided by the static scheduler. The dynamic scheduler is not concerned

with the activities of any time-critical operators or with any special component which

represents a debugging system. This modification still performs the functions required

and provides for a simplified conceptual model of the execution support system. The

dynamic schedule executes its operators in a sequential manner during the slack times

between the execution of time-critical operators controlled by the static schedule. On a

single processor each non-tim'.-critical operator completes its execution before another

non-time-critical operator is started.

116

. C. INTEGRATION

The component which comprises the dynamic scheduler is located in the ditectcy

/caps/dynamic..scheduler. The file is dynarnicjcheduler.a. The dynamic_scheduler is

Invoked by the user interface when the designer selects the execute option in the main

menu. The dynamic scheduler reads the file non.crits which was produced by the static

scheduler and creates a dynamic schedule which is placed in the file ds.a. The dynamic

schedule, static schedule and Ada translation of the PSDL prototype are all compiled and

linked into an executable data component which is currently called prototype. The

dynamic scheduler is contained in Appendix AF.

117

X1. THE DEBUGGER

A. PREVIOUS DESIGN

T'he purpose of the debugger was to provide nan-tirne support for the execution of

prototypes. The debugger was designed as two components: one for the static scheduler

and one for the dynamic scheduler. The debugger processed errors en~countered by either

scheduler. The static debugger would process errors while attempting to create a

schedule and the dynamic debugger would process errrs that occurred while the opera-

tors were e.xecuting. Both debuggers were to operate in a similar manner. They would

repoit an error condition, if possible correct tht, error, then permit the user to dictate

whether execution should continue or terminate. All information relating to an error

would also be written to a file for recall.

The static debugger was to process the following er-rors (17]:

- METNot Less..TanMRT
- METo..Less...Tan_.Period
- NojnitialLink..Op
- No...Matches..Yound
- MCP.NTssThan-MRT
- MET_.NoLessThanACP
- NoBase..lock
- Fail Halfj.eriod
- BadF-otal-imc
- Rat io..yooBig
- Overffime
- Invalid..Schedule
- Schedule..Error
- METRequired
- MET_.GT _Parent
- MTSuJ3T.Yaent

118 0

- CritOpLaks_ME1'
-Crit_.OpLacks_.MET

-Ecessive_.ConstraintsAlterecl

The dynamnic debugger was intended to process errors identified during nm-time exe-

cution oftboth time and non-time critical operators. These errofs were (17]:

- Buffer-Underflow
- Buffer_0verflow
- Unprocessed..Exccption
- InsuficientMET
- ExcessiveExecution

The dynamic debugger was to provide a user with an option wo adjust the MET of an

operator without terinmating the execution of the prototype or to terminate the execution

of the prototype.

e B. PREVIOUS IMPLEMENTATION

The previous implementation consisted of two Ad& program. The implementation

lacked the maturity required for integration into CAPS. The researchers involved with

the parallel development of the static scheduler and the dynamic scheduler, Kilic and

Palazzo, found the previous design and implementation of the debugger too awkward to

integrate with their tools. The previous implementation has not been integrated into

CAPS but should provide guidance in the design of the static and dynamic schedulers,

and consideration in a more complete design of the debugger.

01119

C. MODIFICATIONS

The design and implementation of the static debugger was essentially an exception

hanlCr uid was partially implemented as a component of the static scheduler. The

errors identified by Wood which were not implemented in the current static scheduler

require further evaluation to determine their relevance.

Thc design and implementation of the dynamic debugger essentially provided an

interface with the user to adjust the ME's of operators which fail to satisfy their thm

constraints. The implementation did not contain any nechanism for actually effecting

this change. The effect of changing the MET for one particular operator must be con-

sidered in terms of the static schedule. We have not currently determined whether or not

a new static schedule should be built when a MET is changed in the run-time debugger.

We also suspect that arbitrarily changing a MET in the run-time debugger may result in a

prototype design which might not have a feasible static schedule. Possibly, the debugger

should evaluate the side effects which will result in changing a MET and establish boun-

daries to the user. Care must be taken to ensure that the user is not allowed to modify the

prototype design in the run-time debugger thus causing the prototype to self-destruct.

These issues deserve careful consideration in the further design of a run-time debugger.

120

XII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Our research has contributed towards the development of a rapid prototyping

language and a rapid prototyping environment. The necessay characteristics, features,

and difficulties with the development of such a language and environment have been

refined as a result, of the long term research effort which this thesis describes partially.

The support towards software development and evolution which a rapid prototyping

environment may or should provide and some of the important issues encountered with

its development have also been better defined.

This thesis rearch encorporated the firstattempt to assemble the previous work on

individual tools into one integrated environment. This required a top-down view of the

environment necessitating a much more comprehensive understanding of the major

issues of a rapid prototyping environment than is required for a bottom-up view of a par-

ticular tool. As the integration progressed more and more knowledge of the design,

structure and implementation of previously developed tools and knowledge of the tech-

nologies used in their implementation was required to enable the redesign, partial imple-

mentation and adaption into an integrated environment. Our current state of implementa-

tion reflects an ability to work in or understand PSDL, Ada, C, Pascal, Unix, Kodiyak,

SSL and Sunview Graphics. Future modifications may also require this same knowledge.

121

The current state of development supports the view that it is impossible to corn-

pletely state the requiremcncts of a system in advance iual that the development process

itself changes the perceptions of what is possible or necessary. This has been reflected in

previous chapters. The actual development of the tools and, the environment has been

performed primarily by many graduate students over a long period of time. Student con-

tributions are constrained to relatively short time periods. Consequently, the design of

CAPS has continued to evolve over time as different people have become involved. This

work does not always reflect the ideal solution to a particular issue or implementation

problem. It has becn influenced by the early decision to permit students enough latitude

to make the best use of their backgrounds and to permit them to explore the areas which

interest them most. As the design and implementation have matured, the learning curve

associated with an overall understanding of the environment has increased.

Related research areas currently in progress at the Naval Postgraduate School xre:

- a graph model for software maintenance
- automatic merging of prototype versions
- generation of a CAPS interface with X windows
- prototype analysis and schedule matching
- survey and evaluation of current rapid prototyping processes

B. RECOMMENDATIONS

Version control for our implementations is currently performed manually. The pre-

vious lack of proper documentation and v-.rsion control created significant difficulties

during the initial stage of our integration. Previous incorrect versions of many of the

implementations described in this thesis exist outside of the configuration used here. In

122

.many cases, the imple mntations used in our integration are the only correct versions

which exist on our system.

For evolution purposes implementation path names have been specified fully so that

a new installation or a change in the system configuration may be effected by making

global substitutions of the old system path names with the new system path names. Sys-

teni dependent or configuration dependent path names exist in the following files:

- caps.c
-grapb.c
- nodes.p
- ge
- fp...b.a
- schedulr_b,.a
- dynamic..scheduler.a

Significant follow-on research is require/! in the areas of view consistency, reusabil,

Oity, and run-time debugging. Mes issues and additional areas have been defined in

greater detail within applicable chapters.

02

APPENDIX A PSDL GRAMMAR

Optional itcns are enclosed in (luart brackets]. Iens whkh may appear zero or

morc timcs nppcir in (braces). Terminal symbols appear in" double quotes ". Group-

ings appear in (parcntheass).

psdl

. (component)

component
data-type

I operator

data -type

W "type" 3d type spec type impl

operator
- "operator" Id operator spec operator imp.i

typospec

"Specification (typedecl ("operatnr" id operator speac
(functionality) "end"

type. impl
"implementation ad&" id "t" text ")" "end"

I iplementation" type name ("operator" id operator impl) "end"

operator spec
- "specification" (interface) (functionality) "end"

operator impl
*"implementation ada" id "(" text ")" "end"

I "implementation" padl-impl

type-decl

- id.list ":" type name ("," id-list ":" type name)

functionality
" (keywords) (informal desc] (formal desc]

124

. psdl..impl

data flow diagrm (streams) (timers) (control constraints)

(informal desc) "end"

type name

i Id
I id "(" type decl ")

interface
- attribute (reimts -trace)

id list
Id ("," id)

keywords
- "keywords" id list

informal desc

- 7description" "(" text ")"

formaldesc
: *axioms" "(" text =

data flow diagram

"graph" link (link)

struam
- "data stream" type_decl

timers
- timer" id list

attribute

- input

I output
I gonericparam
states

I exceptions
I timingjinfo

input

- "input" type_decl

output

- "output" type decl

genericparam
- "generic" type_decl

states
- "states" typedecl "initially" expression-list

* 125

excaptiona
- "exceptions" idlis*t

timing info
("maximum execution time" time] ("min~imumn calling period" time)
("maximum, response time" time)

reqmta trace
:; "by requirements" idist

link
.id "." id [":" timt) "->" id

control constraints
v"control constraints" conatraint (constraint)

constraint
-"operator" Id
("triggered" (trigger I (trigger) "if" predicate) (recpits trace))
("period" time (reqmts-trace))
("finish within" tLnie (reqmbs tracel)
(constraint-options)

trigger
-"by all" id -li~t
I"by some" id-list

constraint options
-"output" id-list "if" predicate (reqmts trace)
I"exception" id ("if" predicate] (reqmts trace)
Itimer op id ("it" predicate] Ireqmts trace]

timer -op
"read timer"
I"reset timer"
I"start timer"
I"Stop timer"

expreaaion list
expression I""expression)

tim~e
integer (unit)

unit
-"in

I"5Ce'"
I"min"
I"hours"

126

. eXPre3310on
"constant

i d
Itype name "." id m(" expression-list)

predicate
a imple expresaion
simple expression rel-op siimpleexptession

simple expression
(31gnj integer (unit)

I(sign) real
I("notol Id
3 tring

I("not") *(" predicate)

I("not") boolean constant

bool -op
O and"
" 'or"

rel -op

real
-integer ."integer

integer
w digit (digit)

boolean constant

" "true"I"false"

numeric constant
-real

Iinteger

constant
-nuberic constant
Iboolean cqonstant

0 127

sign

I "-"

char
digit - any printable character except "1

digit

"0 . 9"

letter

I "A .. Z"

alpha-numberic
- letter

digit

id
- letter (alpha-numeric)

string
- (char) HUN

text
- (char)

128

APPENDIX B USER INTERFACE

TILE: cap3.c
AUTHOR: Laura J. White
DATE: 29 Decomber 89
PURPOSE: CAPS - User Interface

include <3tdio. h>
#include <sys/tile.h
#incl ude <*sya/wait .h
#include <signal.h

Psystem dependent pathnamea *
#define SERVER 0suna2w
#define SHELL "/bin/1csh"
#define R SHELL 0/n/3uns2/Usr/ucb/rsh"
#define TEXT FILE "/n/auns2/nork/caps/prototypea/pudl .txt"
#define ADA COMPILER "/n/3uns2/usr/auns2/VADS/bin/a.iake"
#define GRAPHIC EDITOR N/n/ouns2/workc/caps/graphic editor/gew.#define SDE win/3uns2/work/capu/syntax editor/pev"
#define LOCAL MANUAL "man pew
Idefina REMOTE MANUAL "rah suns2 man p."
#define TRANSLaTOR "/n/auns2/work/cap3/tranalator/ translator"

#deftine DYNAMIC R/n/muns2/work/cap/dynaic schedular/dynaaaic acheduler"
#define STATIC 0/n/sun32/work/caps/tatic ;chedulr/static schodultrm
#define PRE SS "/n/suns2/work/capa/static scheduler/pr* Sao
*defiiie PSDL -COMPOSITES "/n/suns2/workc/caps/prototypos/operator. intom
#define PSDLATOMICS "/n/suns2/work/caps/prototype/atoaic. into"
#define PROTOTYPE "/n/suns2/work/cap3/prototypeu/prototype"
#define MV-TLWORK umv /n/suns2/work/caps/prototypes/tl.a %

/n/suns2/work/caps/tl .a"

#define HVTL-HOME "mv /n/suns2/work/caps/tl.a\
/n/sunh2/work/cap3/prototypes/tl .a"

#define MVSS WORK "my /n/sun32/work/cap3/prototypes/s5.a \
/n/suns2/workc/caps/sa"

#define MV-SS HOME "my /n/3uns2/worlc/caps/3s.a\
/n/suna2/work/caps/prototypes/s . a"

#define MV DS 1WORK "mv /n/suns2/work/capa/prototype3/ds.a\
/n/suns2/work/capa/d . a"

#define MVDS HOME "1mv /n/suns2/work/caps/d3.a\
/n/suns2/work/capa/prototypes/ds. a"

union wait status;
Ant code;

129

main 0

runctzion: m1ain menu for CAPS
Date: 9 may 89
Called By: command line
Calla: COnstruct(, execute(), nmodify()
Side Effects: int code

char choice;
char carriage _return;
int cap3 done -0;

while (I caps ' one) (
syatem("clear");
fprintf (3tdout, "\n\xnV~nn4);
fprintf(3tdout," COMPUTER AXOED PROTOTYPING SYSTEM\n");
fprintf(stdout, "\n\n");
fprintf (stdout," (c) onstruct\n");-
fprintf (3tdout," (e)xecute\n");
fprintf (3tdout," (n) odify\n");
fprintf (stdout," Iq) uit\n");
fprintt (atdout, "\n");
fprintf(stdout," Select Option:")
fscanf (3tdin, "%c", £choice);
facanf (3tdin, tc &catrriage _return);
3witch(choice)

case 'c':

ndifyto;
break;

case 'q':
excapsdte);
break;

break;

exitep(0);

130

O mnt conatruct(0

Function: construct selection from~ Cape main menu
submenu for graphic-editor or syntax directed editor

Date: 6 May 1989
Called By: main()
Calis: file /cap3/graphic -editor/go

syntax editoro(
Side Effects: int code

file /Caps/prototypes/psdl .txt
file /caps/prototypea/graph.pio
file /caps/prototypea/graph. links
file /capu/prototypes/psdl.ds
files /caps/prototypes/New~ode.XX

char editor;
char carriage _return;
mnt construct done " 0;

bfhile(Iconstruct -done)
aystem(Wclear");
fprintf (stdout, "\n\n\n\n CONSTRUCT 14OD\n\n");
fprintf (3tdout," (g) raphic editor\nm);
fprint f(stdout, m (s) yntax directed editor\nm);
fpcintf(stdout," (r)eturn to main menu~nm);
fprintf (stdout, "\n Select Option: 0);
fscanf (stdin,"%cm, &editor);
tscanf (stdin, "ic", carriage return);
switch (editor)

case 'g':
system ("clear");
if (fork() - 0)

code-execi (SHELL, SHELL, "-f", GRAPHIC EDITOR, 0);
exit (code);

wait (&status);
break;

Case '3':
syntax -editoro;
break;

case 'r':
const ruct-done++;
break;

default:
fprinti.,atdout, "\n Invalid Choice\nw);
sleep (3);
break;

131

int execute(

Function: execute aelection from caps main menu
Data: 29 Doe 89
C~lled By: main()
Calls: program /caps/translator/translator

progra-m /caps/atc scheduler/prt so
program /cap3/ata ic scheduler/static scheduler
Program /Cap3/dynamic scheduler/dynamic scheduler

Side gffecto: file /CaP3/pZototypes/padl tl.a
file /cap3/PXetotype3/operator. info
file /cap3/prototypea/a .a
file /caps/prototyptA/non crits
file /C8P3/Prototypts/d . a

char hoatnaznet321;
int checkyprototype;

system ("clear") ;

/A check for 3ource file from the graphic editor or syntax directed
editor which represents current prototype design */

if ((checkjprototype - open(TEXT FILE, 0OIWOHLY,O)) -~ -1)
fprintf (3tdoUt, "\n~o, Completed Prototype Available\n");-
sleep (3);
return 0;

close (checkyprototype);

fprintf(stdout;,"\nTranslating .. \n)

if (forko - 0)
code-execi (TRAHSLATOR, TRANSLATOR, TEXT FILE, "-o",

PSDL-TL HOME, 0);
exit (code):

wait (6status);

fprintf (stdout, "\nBuilding Static Schedule ...\n)
if (fork() -- 0)

code-execl(PRE SS, PRE-SS, TEXTFILE, "-o",
PSOLCOMPOSITES, 0);

exit (code);

wait (&atatus);

if (fork() -- 0)
code-execl(STATIC, STATIC, 0);
exit (code);

wait (&s9tatus);

132

fprintf (stdout, "\nfluilding Dynamic Schedule .

if (tork() -~ 0)
code-exaol(DYNAMICt DYNAMIC$ 0);
exit (code);

wait (&status);

system (K'JDSWOKK);
system (KSWOR~K)

gethostnam (hostname, sizeof (hostname))
if (Iatrcip(hostnawe,SRVER))

if (fork () -~ 0) (
code-execl (ADA CON!'ILZR, ADA COWXfUR,

Nsta;tic schedule", 0-fl, *t1.als Odsgaw *sO',
"-on, iPROTOTYpE., 0);

exit (code);

if (fork)- 0)
code-excl (RSHELL,]RSHELL, SERVER, "a.makem,

"stAtic schedulew, 0-f", utl.al, Ids.a", IsseaO,
U-06, PROTOTYPE,, 0);

exit (cod.);

system (HlV_T _.HONE) :
system (K'JDSHOME) ;
system (MV SSHONE);

/* execute */
signal (SXGINT, SIG IGN);
fprintf (stdout, '\nzxecuting ... \n)

sleep (1);
systemu(Oclearm);
if (fork () - 0)

signal (SXGIHT,SXG DrL);
code-execl(PROTOTYPE, PROTOTYPE, 0);
exit (code);

wait (6status);
fprintf (stdout, "\nExecution Completed\n");
3leep(3);
signal (SIGIHT,SIGDFL);

133

int modify()

Function: modify nelection from cap3 main menu
Date: 6 May 89
Called Bly: main 0
CRI13: none
Side Effect3: none

fprintf(atdout.."\n Modifications in progresa\n");
sleep (3);

134

nt, 3yntax editoro(

Function: 3yntax directed editor option from construct subnu
Date: 6 May 89
Called By: construct()
Calls: none
Side Effects: file /caps/prototypts/padl.txt

char text;
char hostname(32J;
char carriage return;

3ysteM ("clearm) ;
fprintf (stdout, "\n\n\n SYNTAX DIRECTED EDITOR\n\n\nm);
fprintf(stdout," Do you desire instructions\n*);
fprintf (atdout," (y) es\n");
fprintf(stdout," (n)o\n");
fprintf (3tdout, "\n");*
fprintf(stdout," Select option: i);

fscanf (3tdin, "%c", £text);
fscanf (stdin, "%c'", £carriage~rturn);
if (text - e'

system ("clear") ;
gethostname (hostnam,sizeof (hoatnaime));
if (I atrcmp (hostname, SERVER))

system (LOCAL MANIUAL);
else

3ystOM(E$DTEKANUAL);

if (text -''

fprintf(stdout,"\n\nr'rems Carriage Return to Continue)
facanf (atdin, tc", &carriage _return);

systez("clear");
if (fork() - 0)

code-execl(SDE, SDE, 0);
exit (code);

wait (&status);
syatem(Omv padl.txt /n/auns2/work/capu/prototypes");

135

KO
APPENDIX C SHELL SCRIPT FOR GRAPHIC EDITOR

f File: ge
Purpose: shell to run the graphic editor - directs input and output

f Author: laura !. white

Date: 17 dec !989
#--

/n/uns2/work/caps/graphic editor/graph
/n/suns2/work/caps/graphieditor/nodes < /n/suns2/work/ctps/prototypes\

/graph.link3
cat /n/suns2/work/caps/prototype3/graph.links /n/auns2/work/caps\

/prototypes/psdl.ds >> /n/suns2/work/caps/prototypes/psdl.imp

136

APPENDIX D GRAPHIC EDITOR

PROGRAM: GKAPH.C
AUTHORS: ROGER K. THORSTEN

LAURA J. WHITE

DATE: 10 November 1988

/* compile this program with "makid graph.c" */

*ifdef MAKID
static char
omakid[] - (
"B(M)cc -g graph.c -o graph -lm -lsuntool -launwindow -ipixrect"

*endif

include <stdio.h>
#include <suntool/sunview.h>
#include <suntool/canvas.h>.include <suntool/panel.h>
#include <suntool/seln.h>
#include <math.h>
#include <string.h>
#include <ctype.h>

/* system dependent names

#define ICON 0/n/suns2/work/caps/graphiceditor/editor.iconu
idefine PRINT "screendump I rsh virgo lpr -Peal -v "

#define SERVERI "virgo"
#define SERVER2 "suns2"
#define SERVER3 "libra"
#define SERVER4 otaurus"

/* define constants for the editing modes A/

#define OPERATOR 0
#define DATA FLOW 1
#define SELF LOOP 2
#define INPUT 3
#define OUTPUT 4
#define EXTERNAL 5

#define PI 3.141592654

#define DISP WIDTH 142 /* the display width */

#define DISPHT 55 /* the display height */

137

dcfine I W LEGTHI 9 P length of the arrow head
#define TEXT TMX LIZ1 35 /A length of name which Is visible

fdefint TXEHAXLE11 10 P lenRth of the time which is visible *

#define PROXXTY 25
/A import predefined editor icon */

static short editor-icon()
#include XCO"

DEFIrNEzCOHlROMIHAGC(editor, editor-icon);

Frame frame; / define the handle for the fra"m

Panel mouseypanel, /" defines the handle for the mouse interface panel

opmodepanel, /6 define the handle for the op mode selection panel Al

edit mode_panel, /A define the handle for the side panel I/
time ynel, /. define the handle for the time panel 0/

name_panel, /a define the handle for the name reading panel 9
mressagepanel; /* difine tie handle for the message panel*/

Canvas drawing canvas; / define the handle for the drawing canvas

Event 4event; /0 define the handle for events /

Pixfont Abold; /* define the handle for the borders A/

Pixwin *drawing.pw; P define the handle for the drawing pixwin

int server - 0; /0 gloabal - flag for server/diskless sun /

int edit mode; /* global - stores the current edit mode 0/

int name checked - 0, /* global - signals that name is valid a/
time checked - 0; /* global - signals that time is valid 0/

int graph saved - 0; /A global - signals whether or not
the graph has been saved 0/

Panel item object name, /* handle for the name /

message, /* handle for the mug 0/

time constraint; /* handle for the time A/

char Atmp-buf, / global - buffer to read the name into A/
tmp-bufl; / global - buffer to read the time constraint into */

FILE Of, /* definte the PSDL link statement file *1
*g;

typedef struct

int length; /* the number of characters in the name */

138

char 3tring(80]; / array to hold the nam or time string 9
NHame, TiM;

typedef atruct line(P stores. output and data flow lines '/
"am name; / name of line 0/

int lntype; / identifies the type of line it is 9
int xtart; / the x coord of the lines starting posit 9
int yatart; /* the y coord of the lines starting posit 9
int xatop; /" x coord of its stopping posit 0/

int yatop; /A y coord of its stopping posit 0/

Noame dCeat; / operator that the Wihe terminates at 9
struct line Onext; /" pointer to the next line from thils operator '/

)Line;

typedef stCuct operator(/A storage stucture for the operators and inputs '/
Niame *name; / operatorOa n /
int optype; /* identifies contents as an operator or external 0/

int xstart; /0 x coord where operator should start to be drawn 0/

Int ystart; /a y coord where operator should start to be drawn /

int xatop; / x coord of the operator's opposite corner 0/

int ystop; /* y coord of the operator's opposite corner 'I
Time ftime const; /* maximum execution time for the operator 0/

Line 0head; P head of the operator's output list /
Line *tail; P tail of the operatoz's output list 'I
struct operator *next; /* pointer to next operator in list 1i.Operator;

typedef struct(/A the list for operators and inputs 0/

operator Ahead; /* pointer to the head of the list t1

Operator Atail; /a pointer to the tail of the list a/

}Operatorlist;

Operator list operator-list;

Operato list lop.list - Soperator list;

Operator7 op *sop, 'dop;

Han name_pointsr;

Name *name - name_pointer;

Time &to;

Line *ln;

/0 forward declarations of functions '/
static Hotify.yalue process canvas.events();

static Notify yalue mode-select);

Operator *alloc operator);

Operator *pick operator();

Operator *create op();

Line *alloc line();

Line *pick Yiii();

0139

Line Accenite-li. 0;

Nfame *external(),

N~ame 'got name();

Time *get time-conat 0;

int iasopyickA);
imt La -line-pick();
nt La valid ad& ido;

int is -valid time conat 0);

int appendto-op3.is3to(
int get-ho3tn&M*();
int qtiityroc 0;
int. loadyproco;
int dumpscreeno;
mnt 3earcho;
int compose();
int decompose();
int 3tore..roo0);
int out of-memo;
mnt input-texto(;
int input tizeo;
int append.line-to-op ;
mnt is-opypicko;
mnt is-inputypicko;
nt proce33oalne0;
int process-opierao;
mnt rubber band 0;
mnt redraw diagram 0;
mnt delete-line();
mnt delete-opo;
mnt delete-input lines 0;
mnt display_ error inag ;
int di3play.ameo~;
mnt display tO
int draw-arrowheado;

mnt draw object 0;
mt create PSDLO;

140

main(argce argv)
int argc;
Char #4argv;

function: Sets up graphic editor
called by: CAPS User Interface
calls: create mouejpanel ()

create ape rating mod~janel ()
create editing modepanel ()
createinamejpanel C)
create -timepanel C)
create messageypanel ()

get hostname 0;

/cause borders to highlight if region entered *
bold - pf open ("/usr/lib/font/fixdwidthfonts/acreen .b.12");
if (bold - MULL) exit(l);

1* create the outer display frame *
frame - window create (NULL, FRAHE,

FRAME LADEL, *CAPS - GRAPHIC EDITOR",
FRAMEIXCON, &editor,
rR.MEARGS, argc, argv,
WIN ERkROR HSG, "can't create window.",
WINX, 2,
WIN7Y, 1,
WIN ROWS1 DISP -HT,
WIN COLUMNS, DISP-WIDTH,
0);

/' create mouseyanel A
mouaeyanel -window -create (frame, PANEL, WIN-FORT , bold, 3);
create mouse panel(0;

/* create opjmdeanel *
opmpodepanel - window -create (frame, PANEL, wimNJONT , bold, 0);
create-operating mnodeypanel();

/* create editing mode panel *
edit modepanel - window create (frame, PANEL, wym-FONT, bold, 0);
create-editingjmodepanel 0 ;

/* create panel to read object names
nameypanel - windowcreate (frame, PANEL, NFJONT, bold, 0);
create nameyan I0

1create panel to read operator time constraints *
time-Panel - window create (frame, PANZI,, WINFONT, bold, 0);
create -time-yanel();

141

create aiagepanel ;@
mazoage-panel - window -create (frame, PA*IEI, wIN FOHT, bold, 0);

PA create canvas to draw on
drawing_ canVAs window oreate(fram, cAmWs, wIN FONT, bold,

WflICONSHE KDD-EVEN4T, wiN7-AsciI zvEHTs,
W'IN7EVENT PROCI PtOC0SS canvas events,
CANVAS RETAINED, TRUE,0)

Pcause drag events to be accepted 0/
window-set (drawing_ canvaa, WINCONSUM& PICK EVNT, LOC -DRAG, 0);
drawingjpw - canvas_pixwin(drawing_ canvas);

/A initialize the operator list A

operator list.head -operator-l13t.tail -NULL;

/A poll for events in the frame *
window nain-loop (frame);

142

get hostnameo

function: This function determines if the user in using a sun serva.
The scrtendump capability for the graphic editor is only functional
if the editor is operating on a sun. server. The control panel
button and registration of the dump_,sorten function are not

part of the graphic display if using a disklems workstation.

called by: main()
calls: none

char hostnamn[32];

gethostnae(hostname, iztof(hostname));
if (1strcmp(hostname,SERVER1))

server++;
if (Istrcmp(hoatnamn,SERVER2))

server++;
if (|strcmp(hostname, SERVER3))

server++;
if (I strcmp (hostnam., SERVE)4))

server++;

143

create mousepanel ()

function: Drawa the mouse interface panel which contains me aages which
describe the functionality of the mouse buttons

called by: main()
calls: none

/* display panel messages */

panel.create item(mouae_pnel, PANEL.MESSAGE, PANELLABEL STRING,
HOUSE INTERFACE:", 0);

panel create item (moue._panel, PANEL-MESSAGE, PANELLABELSTRING,
" ", 0);

panel create item(mouepanel, PANEL MESSAGE, PANELLABELSTRING,
", 0);

panel create item(mousepanel, PANEL MESSAGE, PANEL LABEL STRING,
Left Mouse SELECTS graphic editor functions and", 0);

panel create item(mousepanel, PANELMESSAGE, PANELLABEL STRING,
"locations for new graphic objects", 0);

panel create item(mousepanel, PANEL MESSAGE, PANELLABELSTRING,
", 0);

panel-create item(mouse_panel, PANEL MESSAGE, PANEL LABEL-STRING,
Middle Mouse MOVES graphic objects", 0);

panel create item(mouse_panel, PANEL MESSAGE, PANEL LABELSTRING,
", 0);

panel create item(mouse_panel, PANELMESSAGE, PANEL LABELSTRING,
", 0);

panel create item(mouse_panel, PANEL MESSAGE, PANEL LABEL STRING,
Right Mouse DELETES when positioned:", 0);

panel create item(mouse panel, PANEL MESSAGE, PANEL LABEL STRING,
"within an operator, on the tail of a self loop,", 0);

panel create item(mouse_panel, PANELMESSAGE, PANEL LABELSTRING,
"on the tail/head of a data flow, input or output", 0);

/* fit border around the mouse panel *1
window-fit height (mousepanel) ;

144

create operatingmodepanel ()

function: This procedure builds the operating ,ode panel for the graphic
editor, which consists of the buttons ; "Print Display" (if using
a Server), "Load Existing", "Store", and "Quit".

called by: mnin()
calls: none

/* display panel message "/
panel create item(op-modeyanel, PANELNESSAGE,

PANEL.LABELSTRING," OPZRATXNG HODE:", 0);

/ create button to permit a screendump of display "/
if (server) {

panel create item (op _ode_panel, PANEL-BUTTON,
PANEL LABEL_IMAGE,
panel but-'tonimage (op modeypanel, "Print Design", 0, 0),
PANELNOTIFY.PROC, dumpscreen, 0);

/* create button to cause data to be read from the data base /
panel._ create item(op mode_panel, PAk4EL.BUTTON,

PANEL LABEL IMAGE,
panel button.image (op mode.panel, "Load Existing", 0, 0),
PANELNOTIFY PROC, load_proc, 0);

/* create button to interface with databases *I
panel create item (op modepanel, PANEL BUTTON,

PZA.'.L LBEL IMAGE,
panel button image (op_mode-panel, "Search", 0, 0),
PANELNOTIFYPxOC, search, 0);

/* create button to compose design*/
panel create item(opmode_panel, PANEL BUTTON,

PANELLABELIMAGE,
panelbuttonlmaqe(op-!wde_panel, "Compose", 0, 0),
PANEL NOTIFYF I)C, compose, 0);

/* create button to decompose design*/
panel create item (op-modepanel, PANELBUTTOII,

PANEL LABEL IMAGE,
panel button image (opmode_panel, "Decompose", 0, 0),
PANEL.NOTIFY_PROC, decompose, 0);

/* create button to store the diagram in the data base */
panel createitem(opmodeypanel, PANELBUTTON,

PANEL LABEL IMAGE, panel..buttonimage(op_modepanel, "Store", 0, 0),
PANELNOTIFYPROC, storeproc, 0);

145

/ create button to terminate the program A/

panel c ate.tem (opmodepanel, PANILBUTTOH.
PAIEL uiMLIMAGE, panel button magc(op_!ode_panelr "Quit", Ot O)t

PA;L&COTIr¥3OC, quit_;roc, 0);

/ fit border around the top panel /
wjr.owjit.height (op mode panel);

146

create..editing wodepanel ()

function: builds the editing mode panel for the graphic
editor

called by: main()
calls: none

/A create the mode a.elect panel */
panel create item (edit mode_panelt PANEL CHOICE,

PANEL LABEL SING, * EDITING MOE:
PANELCHOICESTRINGS, " Draw Operator U,

Draw Data Flow ,

* Draw Self Loop ,
* Draw Input f,

Draw Output w

0,
PANEL FEEDBACK, PANEL INVERTED,
PANELNOTIFYPROC, mode ;elect, 0);

/* fit window around the editing mode panel */
window fit_height (edit mode panel);

147

create ntimo-pnnol()

function: build3 the identifier name panel for the graphic editor
called by: niain()
calls: none

object nam~e - panel create item (name~panelf PAN&L TEXT,
I'75UEL LABEL STR5ING, X DENTIFIER NAME:',

PEL VALUE,"I
L'A ELVALUE DXSPLAY LENGTI, TEXT MAX LEN,

0);

panel create item (nameypanel, PANEL BUTTON,
PAN&L LABEL XMAGE, pae utniag~aepnl "Read Name*, 0,0),
P)UIEL7NOTIr7 P ROC, input-text,
0);

window fit height (nameypanel);

148

* create timeypanel C)

flinction: builds the tism constraint panel for the graphic editor
called by: uiain()
calls: nzne

time constraint - panel create item(tiepanal, PANEL-TEXT,
PANEL LABEL STRING,- " TIME CONSTRAINT:01
PANEL7VALUE7"H
PANEL VALUE DISPLAY LENGTH, TINE MAX LEN,
0);

panel create -itenm(timeypanel, PANEL MESSAGE,
PANEL LABELSTRING,*U
0);

panel create -itezu(tim~yanel, PANELBUTTON,
PANEL LABEL IMAGE, panel button image (timeypanel, "Read Time", 0,0),
PANEL -NOTIrypRoc, input-time,
0);

window fit height (timeypanel);

149

create rnessaqc pana].()

function: builds message panel for editor error messages to the user

called by: mnain()
calls: none

/* display messages panel label*/
mesage-panel create item(me33age_panel, PANEL MESSAGE,

PANEL.LABEL STRING,

" MzSSAG! PANEL:", 0);

window fit height(message_panel);

150

.static Notify. value

mode select(item, value, event)

Panel item item;

int value;
Event *event;

function: sets the mode that the editor is operating in by setting the
global variable "edit mode" to one of the predefined mode constants

called by: notifier
calls: none

switch (value)
case OPERATOR:

edit mode - OPERATOR;

break;
case DATAFLOW:

editmode - DATAFLOW;

break;

case SELFLOOP:
edit mode - SELF LOOP;

break;
case INPUT:

edit mode - INPUT;

break;
case OUTPUT:

edit mode - OUTPUT;

break;
default:

break;

return;

0 151

quitjproc ()

tunction; sets the mode that the editor is operating in by setting the
global variable "editj mode" to one ot the pr:edefined mode constats

called by: notifier
calls: diaplxy_.rror Msg()

if (graph saved)
window 3at(trame, FrAt No CO~4FiPM, TRUZ, 0);
window destroy (frame);

Clse
display error msg (6);
wi~ndow set (frame1 0);
window destroy (frame);
display error mg(1);

152a

function: Thi3 function causC3 a previously drawn and stored diagra to
be loaded when the load-existing button is selected,

called by: notifier
calls: create opo(

append to oplisto(
create line 6)
append lintetoo.p ()

int optypexltyl,,x2,y2;
Name Oonama,

*deat;
Tim Otc;

qraph _saved - 0;
9 - fopin (/n/suns2/work/capu/prototypts/graph.pic", r");

while (Ifoof(g)) (
aflaMe - (HaM A)Malloc(LIzOf (NeAt.));
fscant (g,"'%d\n8, optype);,
fscanf(qf"%d\n",&xI);

facant (91 %d\n, &x);
fscant (g,"%d\n", &2);

fscant (g,*%\n,cname->string);
oname->length - strlen (onAMe->2tring);
if ((optype OPKRATOR) I I (optype - ZXTZPMJAL))

t- (Time *)malloc(2iZ*Of(Tix*),;
fscant (g, *%\n*, tc->string);
tc->length - strlen (tc->string);
op - create op (oname,Optypeg,Xl,yl,X2,y2, tc);
append to oP l ist (op .list, op);

else(
dest - (Name *)walloc (sizeof (Name));*
fscanf(g, "%s\n",dest->string);
deat->length - 3trlen (dest->string);
dop create op(dest,optype,xl,yl,x2,y2,to);
ln -create line (onam,optype,xl,yltx2,y2,dop):*
append line toPp (op, ln);

fclose (g);-
redraw diagramo;

153

dwinpjicrccn ()

function: peOorms a screen dump of the graphic editor display.
called by: notifier
calls: none

systCM(eRIUT);

search()

function: will interface with the CAPS database manager when the search
button is selected

called by: notifier

calls: none
I

compose () B
function: will perform the composition of a decomposed design when the

ccmpooe button is selected

called by: notifier

call: none

decompose()
/AA*A*A****A** ***************A***i**

function: will perform the composition of a decomposed design when the
compose button is selected

called by: notifier

calls: none

(

154

storeyProc()

function: stores the data flow diargam into the design data base.
Prior to storing the diagram it calls "create PSDL* which
transforms the picture into its equivalent PSDL statements.

called by: notifier
calls: create PSDLO(

store diagram (

create PSDLO;
store dLagra s);
graph saved - 1;

0155

static Hotify value
process canvas events (canvas1 evenh)

Canvas canvas;
Event Aevent;

function: draws the graphical objects.
called by: notifier
calls: pick line(C)

delete lineoC
pick, operatoro(
delete -opo(
rubber bandoC
proces; objecto(
redraw diagramo(

mnt id - event -id(event);
static mnt xl, yl, x2, y2;
static mnt new posit - 1;
static mnt left button - 0;
static mnt middle-button - 0;

Operator *op;
Line *In;

if (event -is button(event)) / * check for button events *
if (event isdown(event)) (/* store location where button goes down *

x1 - event-?x(event): 1* position of button downevn
yl- eventy(event); eet

switch (id) 0
case MS LEFT: /* create now object A

new~yosit -1;
x2 - xl;
y2 - yl;
left button-i;
break;

case MSIMIDDLE: /* pick object for moving *
break;

case MS -RIGHT: /* pick object for deletion *
if ((in -pick -line (op_list,xl,yl)) I- NULL)

op -NULL;*

delete-line~op_list,op,ln);

else
if ((op - pick operator(op._list,xl,yl)) I- NULL)

delete op (op list, op);
redraw -diagram ();
break;

else if (event is up(event))
switch (id)-

156

case MS LEFT:
rubber band (xlylx2,y2);

x2 - event x(event);
y2 - event.y(event);

process object (xlyl,x2,y2)};
redraw diagram (;
leftbutton-0;
break;

case MS MIDDLE: /* stubbed */
if (trmiddlebutton)

break;
case MS RIGHT: /* stubbed '

break;

)

else
if (id - LOCDAG)

if (left-button)
if (new-posit)

/* rubber band operator's boundary while being drawn */
rubber band (xl, yl, x2, y2) ;
x2 - event-x(event);

y2 - event y(event);

rubber band (xl,yl, x2,y2);

else
newposit

- 0;

return;

0 157

process object (xl, yl, x2,y2)
int xl,yl,x2,y2;

function: processes operators, data flows, self loops, inputs and outputs
called by: process canvas events(
calls: pick operator ()

process operator ()
process line()
display error msg ()

Operator *op, 4sop, *dop;

switch (edit mode)
case OPERATOR:

if (name checked && time checked)
/0 draw object if it is not positioned on top of an existing object */

if (((pick operator (op list, xlyl)-) -NULL) &&
((pick ope-ator (op list,x2,y2) --NULL))

process operator (OPERATOR, xl, yl, x2, y2);

else I
display.error msg (4);

break;
case DATA FLOW:

if (name-checked) I
/* check if the line starts and terminates on an operator */
if ((sop-pick operator (op list,xl,yl)) I-NULL) &&

((dop-pickoperator(oplist,x2,y2))I-NULL) && (sop I- dop))
processline (DATAFLOW,xl,yl,x2,y2, sop, dop);

else
display error msg (5) ;

break;
case SELFLOOP:

if (namechecked)
/* draw the loop if it starts on an object and is not */
/* intersecting an existing object */
if (((sop-pickoperator(oplist,xl,yl) I-NULL) &&

((dop-pick operator (op list, x2,y2))--NULL))
processline(SELFLOOP,xl,yl,x2,y2,sop,sop);

else
display_error mrsg(5);

break;

158 @

case INPUT:
if (name checked)

/* Jheck if line ends on an operator ~
if (((sop-pick operator (opAiat, xllyl)) -MULL) &A

((dop-pick-operator(oplist,x2,y2)) !..ULL))
process line (fIT~xllylt,.2,y2,aop,dop);

display_ error mag (5);

break;
case OUTPUT:

if (nameechecked)
dop - NIULL;
/* check if line is valid *
if (((sop-pick operator (oplist,xl,yl)) taKULL) £

((dop-pick operator (op.. liat, x2,y2))-MULL))
process line (OUTPUZr,xl,yl,x2,y2, sop, dop);

else
di3play_ error-mag (5);

break;
default:

break;

draw object (otypc,xl,yl,x2,y2)

int otype,xl~ylox2,y2;1

function: draws object in the drawing space

called by: process operator()

redraw -diagramo(
calls: none

float i, iid,ymid,xcent,ycent;
int xne%., ynew, xold, yold;

switch(otype)
case OPERATOR:

xmid - (x2-xl)/2.0;
ymid -(y2-yl)/2.0; /0 objects center point on the acreein
xcent -xl + xmid;
ycent - yl + ymid; /* find position to start drawing the object '
xold - x2;
yold - ycent;
/* loop to draw the object *
for(i - 0.0; i <- 2 * PI; £ i + PI 12)

xnew - xcent + (xmid P cos~i));
ynew -ycent + (ymid * 3in(l));
pwvector(drawingypw, xold, yold, xnew, ynew, PIXfiRC, 1);
xold - xnew;
yold - ynew;

break;
case DATA-FLOW:

pwvector(drawingypw, xl, yl, x2, y2, PIX-SRC, 1);
break;

case SELF-LOOP:
piwvector(drawingypw, x2, yl, x2, y2, PIZ SRC, 1);
pswvector(drawingypw, x2, y2, xl, y2, PIXCSRC, 1);
pwvector(drawingpw, xl, y2, xl, yl, PIX-SRC, 1);
break;

case INPUT:
pwvector(drawingypw, xl, yl, x2, y2, PIX-SRC, 1);
break;

case OUTPUT:
pwvector(drawingpw, xl, yl, x2, y2, PIX-SRC, 1);
break;

default:
break;

160

.rubber -band (xl, yl, x2, y2)
mnt xl,yl,x2,y2;

function: expands/shrinks selected drawing object
called by: process canvas events()
calls: nonn

switch (edit mode)
case OPER.ATOR:

pwvector(drawingypw, xl,, yl, x2,r yll PIX MOT(?IX DST), 1);
pw_ octor(dramingyvw, x2, yl, x2, y2, FI O(IDT,1);
pwvector(drawingypw, x2, y2, xl, y2, tlINOT(FIX DS), 1);
pwvector(drawingypw, xl, y2, xl, yl, FIXNOT(FiXOST), 1);
break;

case DATA FLOW:
pwvector(dramingypw, xl, yl, x2, y2l PIXNOT(1ZXDST), 1);
break;

case SELF LOOP:
pw vector (drawingypw, x2, yl, x2, y 2 l IFIXHOT (PIXDST), 1.);
pwvvector(dramingypw, x2, y2, xl, yZ, FXJIOT(FXDS?), 1);
pwvector(drawingypw, xl, y2, xf l, P FI OT(PiX OST), 1);
break;

case INPUT:
pwvector(drawingypw, xl, yl, x2, y2, FIX HOT(FIXXDST), 1);
break;

case OUTPUT:
pwvector(drawingypw, xl, yl, x2, y2, FXX OT(FXXDST), 1);
break;

default:
break;

161

ptoces3 operator (otyre, xl~yl, x2, y2)
int otyp , xl,y., x2, y2;

function: cheekai the name and time constraint, OtoIes into data structure
called by: processspbject()

draw objectoC
calls: draw -object (

gett Ime conat 0)
get-name ()
displayjc (
create-opo(
appendtqoP_.1i3to(

Name *obj -name;
Time Akto;
Operator Oop;

draw-object (otype, xl,yl, x2,y2);
to - get time consto;
obj n.ame - get-name();
display npame (objname,otype,xl,pyl,x2,y2);
displayto (tc, xl,yl, x2, y2);
op - create op(obj_ nam,,lotypetxlfyl,x2,y2,tc);
append to op liSt (op_ list, op);
name checked -0;
time-checked - 0;

162 W

procebs line (otypefxllyl~x2,y2, sop, dop)
nt otypelxl,yl,x2,y2;

Operator Aa0POp dop;

function: gets attributes and draws a line
called by: process object()

draw object (
Calls: draw objecto(

draw arrowheado(
get time const()
external()
create-op()
append to op ,list (
get-name()
display name ()
create-line ()
append-toop()

Hame *objnae, *opnae;
Line *In;

draw olI* . t (otype, xl,yl, x2, y2);
if (otype - SELF_-LOOP)

draw arrowhead (x2, y2, x2, yl);
else

draw -Arrowhead (xl, yl,.x2, y2);

if(tp - eNUT

tapp eto oplisto it; o)

obiname getrnal);

In - create line (obji name, otype, xl, yl, x2, y2, dop);-
append lineito op(sop,ln);
name checked - 0O;

163

Operator *create op(name, op..type,xl,ylx2,y2,tc)
Name A*name;
int op typ;

int xl,yl,x2,y2;
Time *tc;

*~*AA******** AAA******AA************A********A*************A*AAA**********

function: gets the storage required to store an operator or input by
calling alloc operator. It then fills in the operator with its name,
coordinates, and time constraint.

called by: loadyproc()
process operator(
process line 0

calls: alloc operatoro(

Operator *new op;
new op - allocoperatoro;
new op->name - name;
new op->time conat - to;
new op->head - NULL;
new op->tail - NULL;
new-op->next - NULL;
switch(op_ type) (

case OPERATOR:
new op->optype - OPERATOR;
new op->xstart - xl;
new op->ystart - yl;
new op->xstop - x2;
newop->ystop - y2;
break;

case EXTERNAL:
new op->optype - EXTERNAL;
new op->xstart - 0;
newop->ystart - 0;
new.op->xstop - 0;
new-op->ystop - 0;
break;

default:
break;

return(newop);

164

Line *createiline (nazme, in type, xl,yllx2,y2, deat-op)
Name *name;
int In-type;
int xl,yl,x2,y2;
Operator Adest op;

function: gets the storage required to store a data flow line or an
output line by calling alloc -line. Xt then fills in the line struot
with its name and coordinates.

called by; loaciproc()
process -lineo(

calls: alloc-line()
external ()

Line *new in;

new in - alloc-lineO);
new in->name - name;
new ln->xstart - xl;
new ln->yatart - yl;
new ln->Xstop - x2;
new in->yatop -y2;
new -ln->next - NULL;
switch(ln -type)

case iNPUT:
new ln->lntype - XNPUT;
new ln->dest - dest-op->name;
brea;k;

case DATA FLOW:
new in->lntype - DATAFLW
new lIn->dest - dent-op->name;
break;

case OUTPUT:
new -ln->lntype - OUTPUT;
new in->dest - external();
break;

case SELF-LOOP:
new in->lntype - SELFLoo';
new lin->dest - destop->name;
brea;k;

default:
break;

return (new-in);

165

doloteop(op.liat. p)
Op;rator list *op-lit;
Operator op;

function: deletes operators from the drawing space and the internal data
structure

called by: procesncanvan-events(}
delete input lines()

calls: delete input lines()

Operator *dptre
*otemp;

Line *lptr,
*ltemp;

Name $n;

/* find lines which terminate on this operator and delete them A,

n - op->name;
delete input lines(op list,n);
otamp Z op list->head; /A put pointer at head of op list /
if (op I- otemp) (/* is the first op the one to delete? a/

while (otemp->next I- op) I /P if not, find the one to delete a/
otemp - otemp->next;

dptr - otemp->next; / unlink the op to be deleted A/

if (dptr->next I- NULL)
otemp->next Ndptr->next;
dptr->next - NULL;

else
otemp->next - NULL;

else C /A the first one is the one to delete A/
dptr - op_list->head; * unlink the first op A/

oplist->head - dptr->next;

if (dptr->hcad I- HULL) I /P does it have any aasoc lines ? A/
itemp Ndptr->head;

lptr - dptr->head;
dptr->head - NULl1 ; 1
while(lptr->next I- NULL)

lptr - lptr->next;
ltemp - lptr;

lptr - NULL;
itemp - NULL;

dptr -NULL;

166

. delete input lines (oplist, n)
Operator.li t pliot,
Hanme *n;

function: deletes lines asociated with an operator when deleting operators

called by: delete op()

calls: delete op)
delete.1 ine ()

Operator *optr;
Line *lptz,

aItemp;

optr - op list->head;
while(optr I- MULL) P search the entire list of operators 'I

Iptr - optr->head;
while(lptr I- MULL) P check each lint leaving each operator '1

if(Istrcmp(n->atring, lptr->dest->string))
Itemp - lptr->next;
10 found a line with the destination searched for *1
delete line(oplist,optr,lptr); / so delete it */

if(optr->optype - ZXTZPMAL)
deleteop(op listoptr):

lptr - Itemp;

else (
lptr - lptr->next:

optr - optr->next;

167

dolctolino (oplisto op, In)
Operar -_lrin opjlit;
Operator 0op;
Line %In;

function: remove* line from linked list data structure

called by: deletejnputlines()

calls: none

Operator 0optr;
Line *iptr,

*otemp;

int lnfound - 0;

iftcp I- NULL)
optr - op; / start the search for the line at its source op A/

ipt: - optr-Axtad;
ltemp - lptr;
while(iptr I- In) I

ltemp Iptr;
Iptr - iptr->next;

else (source op is unknown - find the line */
optr - oplist->heid;
while((optr I- HULL) 4& (lin found)) (

Iptr - optr->head;
itemp lptr;
while((Iptr I- NULL) && (lin found))

if (lptr -- In)
In found - 1;

else I
ltemp iptr;
lptr - iptr->next;

if (lin found)
optr - optr->next;

/P unlink the line */
if (itemp -- lptr) 1 /* delete first line on list */

optr->head - ltemp->next;
lptr->next - NULL;
Itemp - NULL;

if (optr->head -- NULL) /* first line was the only line */
optr->tail - NULL;

else (

168

if (lptr - optr->tail) I /* dolote last line from the list *
lternp->next - NiULL;
optr->tail -).teop;

elac (* delete a middle line from the list '
ltemp->next -lptc->next;
iptr->next - h U. ;

optr N ~ULL;

16

Operator *pick operator(opliat,xpick,ypick)

Ant xpick, ypick;

A* A A AA A* AAA AAA A*AAAA AA**A * A*AAAAAAA*A*A**AAA* AA***A*

function: determines if a data flow line or output line starts on an
operator. If the search for a source operator is successfult it
returns a pointer to that operator.

called by: process canvas events()
process operator()

calls: is ..oppick()
AA*AA AAAAAAAA*AA****A**A****AAAA*A*AAAAAA**AAA***A**A**AAAAA**AAAAA*/**

Operator *ptr;

for (ptr - oplist->head; ptr I- NULL; ptr - ptr->next)
if (ptr->optype - OPERATOR) (/* skip the null operators */

if (is op_pick(ptr->xstart, ptr->ystart, /* test for pick A/

ptr->xstop, ptr->ystop, xpick, ypick))
return (ptr);

return(NULL);

170

emt is op9 pick (xl, yl, x2,y2, xp, yp)
int xl, yl, x2, y2, xp, yp;

function: determines if a pick has occurred within the bounds of an
operator.

called by: pick -operator()
calls: none

if (((xp >xl) £&(xp <x2) £&(yp >yl) A& (yp <y2))I
(xp < xl) &&(xp > x2) £&(yp > yl) (yp < y2) H
(xp <xl) &&(xp >x2) £&(yp <yl) £~(yp> y2))g
(xp > xl) £&(xp < x2) £~(yp < yl) (& yp > y2))

return(1) ;
else

return(0) ;

C 171

Line Apick-line (op liat~xpick1 ypIck)*

function: determines if a line object was picked with the mouse
called by: PeocC33scanvaa-event3()
calls: is ,lineypicko(

Operaror-liat *0pli13t;
int Xpick, ypick;

Operator *optr;
Line Alptr;

/A search each operatort3 line list
for (optr -opl.ist->head; optr I- HULL; optr -optr->next)(

for (lptr - optr->head; lptr I- HULL; lptr -lptr->next)
if (i3alineyick(lptr->xatart, lptr->ystart, /* test for pick *

lptr->xstop, lptr->yatop, xpick, ypick))
return (lptr);

return (HULL);

172

int 13 lineypick (xliyl, x2, y2, xp, yp)
int xl, yl, x2, y2, xp, yp;

function: determines if mouse is on a line
called by: pick line()
calla: none

if (((ab3(xl-xp)+abs(yl-yp)) < PROXIMITY)
((abs (x2-xp) labs (y2-yp)) < PROXIMITY))
return (1);

else
return (0) ;

173

append toop _li t (op.lizt, op)
operatorlisit *op..list;
Oparate= *op;

function: adds new operators to linked list of operatora
called by: loadyproc()

procesa operator ()
procesaoline ()

calls: none

if (oplist->head H- NULL) I
oplist->head - op; /* attach first operator to list A/
op list->tail - op;

else C
oplist->tail->next - op; /* attach operator to end of list */
oplist->tail - op;

)17

174

I

. append line to op (op, in)
Operator *Op;
Line *In;

function: attaches data flows, states, and outputs to link list of operators
called by: loadjproc()

process line ()
calls: nor.a

I
if (op->head -M 1ULL) I

op->head - In; 1' attach first lina to lst *
op->tail - In;

else {
op->tail->next - In; /* attach to end of line list *
op->tail - In;

175

Operator Aalioc operator)

function: allocates dynamic storage for operators their input
called by: create op()
calla: none

Operator *op;

op - (Operator A)rnaloo (A:eof (Operator));
return (op);

176

. Line Palloc.line()

function: allocates dynamic storage for data flows and outputa of an operator
called by: create line()
calls: none

Line *In;

In - (Line *)malloc(sizeof(Line));
rexturn (In);

177

input text(item, value, event)
Panel item item;
Ant value;
Event *event;

function: reads the names from the name panel
called by: notifler when entering an object identifier name
calls: isvalid ada-id(

display, error msg ()
A AAAAA A AA** A AAA A* AAAA A****A******A*A*AA********AAAA*A*AA*A****/*

tmp.buf - malloc(80);
/* initialize the storage */

tMp bufo - '

strcpy (tmp_buf, (char *) panel get value (object name));
/* check to see if the name is an ada identifier */
if (is valid-ada id(tmp buf))

displayerror msg (i);
name checked ;; 1;

else
displayerror mag (2);

178

. display error msg (msgid)
Ant msgid;

function: displays warnings and error messages in the message panel
called by: processobject()

inplittext (
input tke ()
quitproc(}

calls: none
**

char *msg;

msg - malloc(61);
switch (msgid) 1

case 1:

msg - " MESSAGE PANEL:

break;
case 2:

m3g - " MESSAGE PANEL: SYNTAX ERROR in ADA identifier
break;

case 3:
msg - " MESSAGE PANEL: SYNTAX ERROR in Maximum Execution Time

break;
case 4:

msg - " MESSAGE PANEL: ERROR - Either NAME or TIME not read U;

break;
case 5:

msg - " MESSAGE PANEL: ERROR - NAME not read

break;
case 6:

msg - " MESSAGE PANEL: WARNING - The graph has not been stor*ed| ;
break;

default:
break;

window set (messageyanel, C);
panel set(message, PANELLABEL STRING, mag, 0);

0 .179

Naome *get name()

fun~ction: creat*3 a dynamic nam~e structure
call~ed by: processoprr~ozr()

procassolino C)
calls: none

Name On;j

atc..jpy (n->3tring tnmpbuf) ;
n->length 3 tr1en(n->3trinq);
return (n);

. ~ ~display name (nt otypo, xl, yl, x2, y2)
llama n
int otypoQ,xl,yl,x!,y2;

function: display3 the name of the object which the user has drawn.
Iperator names are centered within the operator, data flow line
namea start above the center of the line, input naaae s tart above
the initial point of the line, and output names start at the end
of the outptit lino.

called by: praces a j rato r(
procoss line(C)
redraw. diagram

callz: none

float xcent,'.cent;

xcn -% + ((x2 -x1) /2.01))
vcenL yl + ((y 2

-yl) /2.0);
switch (otype)(

case OPER&T0IR:
xcent =1 + ((x2 - xl) /2.0);
ycent yl + ((y2 - yl) /2.0);
pw text (canvas yixwir; (drawing_ canvas),

(int)xcent- ((n->length) /2) *8,
(int) ycent+ , FIX SRC, NULL, n >string);I

break;
case ZNPUT:

pw .text (canvas pixwin (drawing_ canvas) ,xl, yl,PFXX SRC,
NULL, n->3t ring);

break;
case OUTPUT:

pw '.ext, (canvasypixwin (drawing_;an':as) , x2, y2, 1!IX SRC,
NULL, n->string);

break;
case DATA FLOW:

xcent - (x2 - x1) /2. 0;
ycent -(y2 - yl) /2.0;
pw text (canivas pixwin (draminS;_canva3) ,xl+ tint) xcer.t,

yl+ (int) ycent, FIXSIRC,UL,n->atring);
break;

caae SELF-LOOP:
xcent - xl + ((x2 -xl) / 2.0);
pwtext (canvas pixw~n (drawing_ canvas),

(int) xcent- ((n->length) /2) *8,
(int) y2-7, FIX SRC, NULL, n->3tri.ng);

break;
default:

break;

0 181

int i3-valid - da,-id(tmpbpuf)
C h n r z f.opbu f((0 0

function: chock3 to ace if a namo is a legal ada identifier
callod by: input-text(I
calls*. none

int apace found 0:
int i - 1

if (±aAlphA(tniPbuf(Oj))
while (i <- otclen((ohar n)tmpp but) -1

if (I Lograph (tmp_ iCji)))
spaceafoiztd I

if((i~nw~~tm bu Ii)) I tmpuf~)'.-'')~1(3paCejfound))

else
raturn (0);,

raturn(1) ;

caloe
return (0);

182

Input time(item, valuec event)
Panel -item iI~em;
int valne;
Event Aevent;

function: get* and checks tim'e constraints
called by: notitiexi
calls: display_ error M3g9()

iivalid timne const)

tmpbPutl - malloc(12);
tmpb.ufl(O) - 1 '

3trCpy (tMpb.Ufl, (char *) panel get -value (time contraint));
if (isyvalid-timec.onst (tmp..bufl))

display_ error mag (1);
time-checked -; 1;

else
display_ error Mag (3);

183

int is vlid time conat (tmpb.ufl1)
char tmpbufl1(121;

function: checks syntax for time constraint
called by: input -t3.me()
calls: none

int nondigit found -0;
int letterprev -found -0;
int mfound -0;
int ufound - 0;
int done - 0;
int i-i1;

if (iadigit(tmpb.ufl(03)))
while (3. <- strlen((char Ok)tmpbpufl) -1)

if (Iisalnum(tmpb.ufl~ij))
return (0);

else
if (isdigit (tmip buf1 il) &I nondigit found)

i- 3. + 1
else(

if (isdigit (tmpPuf 1(3)))
return(0) ;

else (
nondigit found - 1;
switch (tmp bufl (3.)
case 'u": if (tletteryrev found)

ufound - 1;
letteryprev f ound -1;
3.-3 + 1;

else
return(0) ;

break;
case '3': if (Iletterjprev found)

letteryrev found - 1;
3-3.+ 1;

else I
if ((ufoundllmfound)c.&!done)

done -1;
3.-3 + 1

else
return(0) ;

break;
case 'in': if (Iletter Torev found)

infound - 1;

184

letteryprev -found -1

else
return(0) ;

break;
default :return(0);

break;

if ((ufound6&tdone)lIt(Inond.gitfouuid))
return (0);

else
retuzrn(0);

185

Time Aget time const()

function: creates initial time structure for objects

called by: proccss operator()

process line()

calls: none

Time *tc;

/A get storage for the time constraint A/

tc - (Time *)malloc(sizeof(Time));

switch(edit mode)

Case OPERATOR:
strcpy(tc->string,tmpbufl); /* assign input string */
tc->length - strlen(tc->string); /A find length of the string /
break;

case INPUT:
strcpy (tc->string, "0s");
tc->length - 2;
break;

default:
break;

return (tc);

186

. diaplaytc (tc, xl, yl, x2, y2)
Time Atc;

int xl,yl,x2,y2;

function: di3play3 time conatraint in the drawing apace
called by: Proceas -Operator(

redraw -diagramo(
c&lla: none

float xcent;

xcent - xl + ((x2 - x1) / 2.0);
pw text (canvaaypixwin (drawing_ canvaa), (int) xcent- ((tc->length) /2) *8,

187

name *external()

function: returns the name "EXTERNAL" whenever it is called. It is
used to provide the names for the source of input lines and
destination of output lines.

called by: create line()
process line()

calls: none

Name *n;

n - (Name *)malloc(sizeof(Name)); /* Olloc storage A/

strcpy(n->string,"EXTERNAL"); /* assign name
n->length - 8; /* assign name

return(n);

188

. create PSDL0(

function: creates the PSDL 3tatei'ent3 represented by the user's data
flow diagram. A PSDL statem~ent of the form~
output line name.3source -nameC: time -constraint) ->destination nam
will be con73tructed from the information contained in the operator
list.

called by: 3toreyProc(
C8all3: none

Operator wopyptr;
Line *outputyptr;
char %psdl;
char *P~iriod -
char *colon -
char *arro~w we

f - fopen ("/n/suns2/work/caps/prototypea/graph.links", "w");
pad. - malloc(270);,
psdl(O) -e f
opyptr -e oplist->head; /* point at head of the operator list *
while(opyptr I-e NULL)(

output~ptr - opyptr->head; /* point line ptr at head of line list*/
while(outputyptr I-e NULL) (

/* assemble the pad]. statement by concatenating the parts of the
PSOL 3tateMents together */

pad]. - 3trcat (pad., outputytr->nazue->string):
pad]. - 3trcat(psdl,period);
pad]. we strcat (pad].,opyptr->name->stringj);
psdl - trcat(psdl~colon);
if ((opyptr->optype - OPERATOR) £

(opyptr->time const->string I- "Osl))
pad]. - 3trcat (pad].,o optr->time-const->string);

pad]. - strcat(psdl,arrow);
pd]. we strcat (pad].,outputyptr->dest->string);
fprintf(f,"-%3\n",psd34; /* store link stint in file *
pad].EO] - 1 1; /* reinitialize *
outputptr - outputyptr->next;

opptr - opyptr->next;

fClo3e (f);

store-diagam 0)

foinction: wrtes, the current prototype design to a file
called by: stozeypoct)
calls: none

operator Aopptr;
Line Alnyptr;

g - fopen("/n/auna2/work/capa/prototypea/graph.picI"ww);
opyptr -. oplit->head;
while(opyptr I-e MULL)(

fpirintf (g, "%d\n",opyt->optype);
fprintf (g, "%d\n",opyptr->xatart);
fprintf (g, "%d\n",opyptr->yatart);
fprintf (g, "%d\n",op-ptr->xatop);

fprintf (g, "%d~n",opptr->nwme>atrng)
fprintf (g, "%\n,opptr->timecotn>arig)

lnjptr -opyptr->head;
while (lnptr I- NULL)

fprintf (g, "%d\n", lnyptr->xstart);

fprintf (g, "%d\nw, lnyptr->ystop);

fprintf (9,"%s\n", lnypt->dest->string);
lnyptr -lnytr->next;

opyptr -opjptr->next;

fclo3e (g);*

. redraw diagram (

function: redraws the diagram~ in the drawing space
called by: load proc()

proce33 caflva e vents ()
calla: draw-ob-ject (

display nameo(
di3pl&YtCo(
draw arrowhead (

Operator *op-ptr;
Line *lnjptr;

pw-writebackground (drawingjpw, 0, 0,
window _get (drawing canvas, CA*VAS -WIDTM)f
wind(,get (drawing_ . anva,CARVAS HEIGHT),
PIX SRC!;

opyptr - oplist->head;i
while(opytr I- MULL)

if(opyptr->optype - OPERATOR)
draw-object (opjptr->optype, opyptr->xstart, opptr->ystartt

opyptr->xstop, opyptr->yatop);
display npame (opyptr->name, OPERATOR, opyptr->xstart,

opyPtr->ystart, opyptr->xstop, opy.tr->yatop);
d13playtC (oPptr->tiMe -const, opyptr->xatart, opptr->yatart,

opyptr->xstop, opptr->ystop);

1nyptr - opyptr->head;
while(lnyptr I- HULL)

draw object (lnyptr->lntype, lz~tr->xstart, ln~ptr->ystart,
1nyptr->xstop, lnyptr->ystop);

if (lnjptr->lntype - SZLrJ.OoP)
draw arrowhead (lnptr->xstop, lnptr->ystop,

lnptr->xstop, lnptr->yatart);
else

draw-arrowhead (lnyptr->xstart, lnyptr->ystart,
lnyptr->xstop, lnyptr->ystop);

display niame (lnytr->namne, ln~ptr->lntype, lnptr->xstart,
lnyptr->ystart, lnyptr->xstop,lnyptr->ystop);

lnyptr - lnptr->next;

opptr - opyptr->r.ext;

draw arowhcd(-lt y1, x2, y2)
int x1i yl, x21 y

2;

function: draw7 an arrow head xt the end of a line at the appropriate angle
called by: proccoz lint()

redraw arrowhead ()
call3: none

int xl _ ns, yl trans, x2 trans, y2_trans;

int xpt yptl, xpt2, ypti2,

xP trans, yptl -trans, xpt2-trans, ypt2-trana;
double let I, theta;

/* translate the line to the origin 0/
xl trans - xl - x2;
yltrans - yl - y2;
P find the length of the line A/

length - 3qrt (pow((double)xl trans2.0) + pow ({double)yl transf2.0)):*
/ find the angle between the line and the x axis C/

theha - acos ((double)xl tran3/length);

/A calculate the coords of the points of the arrowhead */

xptl - ARROW LENGTH * cos(theta + PX / 6.0);

yptl - ARROW-LENGTH s3in(theta + PI I 6.0);

xpt2 -ARROW-ENGTH * co3(theta - PI / 6.0);

ypt2 - ARROW LENGTH * sin(theta - PX / 6.0);

/0 reflect y coords across x axis if yl trans is negative A/

if (yl.trans < 0) 1
yptl - -yptl;
ypt2 - -ypt2;

P translate the coords of the arrowhead out to the posit of the line a/

xptl-tras - xpt2l + x2;
yptl-rans - yptl + y2;
xpt2.trans - xpt2 + x2;
ypt2trans - ypt2 + y2;
/A draw the point of the arrow
pwvector(drawingpw, xptltrans, yptl-trans, x2, y2, PIX SRC, 1);
pw vector(drawing_pw, xpt27trans, ypt2 trans, x2, y2, PIXSRC, 1);
pw vector(drawingpw, xptl trans, yptl-trans, xpt2 trans, ypt2 trans,

PIX-SRC, 1);

192

APPENDIX E LINK STATEMENT ANALYZER

Program,: nodes.p
Author: Hank Raum
Last Modified: 9 December 89 by Laura J. White

program CreateNodes (inputoutput);

conat (0 Global Constants *)
period - ,.1;

colon - 1:';
arrow - I

blank'' ';

EXTERNAL - 'EXTERNAL

type
3tring80 - packed array (0..791 of char;
DataPtr - "DataType;

DataType - record (Node for Linked List *)
Name: string80; (; of Nodes *)
Link: DataPtr;
end; (, DataType A)

Operptr - Operator;
Operator - record (" Node of Linked List of Operators *)

Opmame: stringeO; (A Operator Name A)

InputList: DataPtr; (* Head Pointer to Input List *)
InLiatTail: DataPtr; (A Tail Pointer to Input List A)

OutputList: DataPtr; (A Head Pointer to Output List *)
OutListTail: DataPtr; (A Tail Pointer to Output List A)

StateLiet: DataPtr; (A Head Pointer to State List A)

StateListTail: DataPtr; (* Tail Pointer to State List A)

MET: string80; (M Maximum Execution Time A)

Link: OperPtr;
end; (A Operator A)

var
OpHead: OperPtr; (A Head of Operator List *)
OpTail: OperPtr; (A Tail of Operator List A)

DataHead: DataPtr; (A Head of Data List A)

DataTail: DataPtr; (A Tail of Data List A)

0 193

procedure ReadToken(delimeter:char;
var token:string8O);

(A Reads PSDb Link statements fron. standarA input, one token at A)

(* a time. Delimtter3s are: period, colon, arrow and End of Line A)

var
ndx:integer;
ch: char;

begin
ndx :- 0; (A initialize A)

read(ch);
while (ch <> delimeter) and (not eoln) do

begin
token[ndx) :- ch; (A Gets tokeA characte= by character A)

read(ch); (A until delimeter or eoln A)

ndx :- ndx + 1;
end: (A while*)

if coln then token(ndxl :- ch; (. Gets last character before A)

if delimeter - arrow then (e end of line A)

begin
read(ch); read(ch); (* remove rest of arrow *)
end; (* if *)

if eoln then readln; (A resets line A)

end; (* ReadToken *)

--

194

procedure ReadOperMet (var Operl, Met: atring8O);

(A Reads PSDL Link statements from standard input, one token at A)

(A a time. Determines Operatorl and Haximum Zxecution TAme A)

var
ndx: integer;
ch: char;

begin
ndx :- 0; (A initialize *)
read (ch);
while (ch <> colon) and (ch <> arrow) do

begin
Operl(ndx) :- ch; (A Gets token character by character A)

read(ch); (A until delimeter or oln '
ndx :- ndx + 1;
end; (* * hile*)

if ch - colon then (a end of line A)

begin
ndx :- 0;
read(ch);
while ch <> arrow do

begin
Met(ndx) :- ch; (A Gets token by character A)

read(ch); (* until delimeter or eoln *)
ndx :- ndx + 1;
end; (* while*)

end; (A if *)
read(ch); read(ch); (A remove rest of arrow A)

end; (* ReadToken *)

(--)

195

function OpSearch (B1ead:* OperPtr;
Target: atrIng8O): Operiftr;

(0 Starches Operator List for Target string, returns pointer A

(A to target If found, otherwise NIL A)

begin
if Head - nil then

OpSearch :- nil (Aempty list A

else if Head'.Op~ame - Target then
OpSearch :-Head (A target found A

else
OpSearch :Op~earch(flead'.Link, Target);

end;

(- - - -- - - - -- - - - -- - -A)-- - - -- - - -

procedure OpAdd (var Head: OperPtr;
var Tail: OperPtr;

Target: string8O);

(* Adds new Operator to end of linked list ')

var

p: Operptr; (A temp pointer A)

begin
if Head - nil then (A List is empty A)

begin
new(p); (A Create new head node A)

Head :- p;
Tail :- p;
p^.OpName :- Target; (A Initialize new list A)

p'.XnputList :- nil;
p'.InLiatTail :- nil;
p'.OutputList :- nil;
p'.OutListTail :- nil;
pa.Link :- nil;

end (* if A)

else (A List not empty *)
begin
new(p); (A Add new node after tail A)

Tail-.Link :- p;
Tail :- Tail'.Link;
p".OpName :- Target; (I Initialize new lists A)

p^.InputList :- nil;
p".InListTail :- nil;
p'.OutputList :- nil;

p .OutLiatTail 1- nil;
p-.StateList :- nil;
p'.StateListTail :- nil;
p^.Link :- nil;
end (* else *)

end; (* OpAdd *)

(--)

197

function Seazch (Head: DataLtr;
Ta:get: 3tringSO): Dataftz;

(A Searches Data L13tfor Target string, returns pointer A)

C' to target if found, otherwise NIL A)

begin

if Read - nil then
Search :- nil (A elpty list A)

else if Hlead'.Name - Target then

Search :- head (A targe found A)

else
search :S Search(Head'.Link, Target);

end; (A Search A)

198

proceduze Add (var Head: DataFtr;
var Tail: DataPtr;

Target: stringflO);

(Add3 new Data to and of linked lists A

var
p: Data~tr; (ATamp pointer i

begin
if Head -nil then (List is emty A

begin
new(p): (Create new node*A
Head :-p;
Tail :-p;
p -.lName :wTarget; (' nitialize new lists 6)
p'.Link :-nil;

end (Aif A

else (AList not empty A

begin
new(p); (AAdd new nodes after tail ~
Tail-.Link :-p;
Tail :- TaiV .Link;
p .ae :~Target; (AInitialize new lists A

p-.Link :-nil;
end (V 6dife

end; (A OpAdd *)

(--)

procedure LoadDaLaStructure(var OpHead, OpTail: Operptr;
var DataHead, DataTail: DataPtr);

(Loads tokens into Data Structures A)

var
Current: OperPtr; (A Temp pointer A)

Data, met: atringeo; (A FSDL Tokens 4)

Operl, Oper2: string80;

begin
Data :- blank; (A Initialize Strings A)

Operl :- blank;

Met :- blank;

Oper2 :- blank;

while not eof do

begin (Geot tokens A)

ReadToken (period, Data);
ReadOperHet (OperlMet);

ReadToken(' ',Oper2);
if Operl <> EXTERNAL then (A Keyword EXTERNAL is not "}

begin (A an Operator A)

(U*A**A*AAAsegv on next statement *AA*A)

Current :- OpSearch(OpHeadOperl);

if Current - nil then

begin (A Add Operator 1 A)

OpAdd(OpHead, OpTailfOper1);
Current : OpSearch(OpHeadtOperl);

end; (i jf A)

Current'.MET :- Met; (A Enter Maximun Execution Time ')
(* Add Data to Operators Output List A)

if Operl - Oper2 then
begin
if Search(Current'.StateListData) - nil then

Add(Current'.StateList,Current'.StateListTail,
Data);

end
else

if Search(Current".OutputListData) - nil then
Add(Current'.OutputList,Current'.OutLiatTail,

Data);
end; (A if *)

if Oper2 <> EXTERNAL then (* Keyword EXTERNAL is not A)
begin (A an Operator A)

Current :- OpSearch(OpHead,Oper2);
if Current - nil then

begin (* Add operator 2 A)

OpAdd (OpHead,OpTail,Oper2);
Current :- OpSearch(OpHead,Oper2);
end; (A if A)

200

Add Data to operators Input List
if Operl - Oper2 then

begin
if Search(Current'.StateListData) - nil then

Add(Current .StateList,Current'.StateLiatTail,
Data);

end
else

if Search(Current^.InputList,Data) - nil then
Add(Curent .InputListCurrent .XnListTail,

Data);
end; (A if A)

(* Enter new internal Data Streams in Data List A)

if ((Operl <> EXTERNAL) and (Oper2 <> EXTERNAL)) and
(Operl <> Oper2) then

if Search(DataHead,Data)- nil then
Add(DataHead, DataTailData);

Data :- blank; (A Reset Strings A)

Operl :- blank;
Met :- blank;
Oper2 :- blank;
end; (A while A)

end; (* LoadDataStructure A)

--

0 :201

procedure WriteStrLng(var rile:text; Str; 3tringOO);

var
ndx: integer;

begin
ndx :- 0;
while Str(nJx) <> ' do

begin
strIte (File; Str~ndx));
ndx :-ndx + 1;
end; (0 while ~

and; (AWrite~tring A

(---)

202

procedure KakePSDL(!ieac- OperPtr);

(Generates partial PSDb Specification for each now operator *
(~in the Graphical decoatposition ~

type
3tring42 - packed array (0,411 of char;

var
Curr~ent: Operltr; (A Temp pointersa A)

XnTemp: DataPtr;
OutTemp: Dataftr;
StateTamp; OataPtr;
Qutrile: text;
1Iode~Iame: 3tr3.ng42; (AUnix f Ile name 0)

begin
Current :-Head;
Nodemame :- /n/suna2/work/capa/prototype/ewWode.OlI;

while Current<> nil do
begin
rewrite (Outrile,HodeNm%~); ('Create now file *

(0 output 1P3DL 16)

write (outrileflOPERATOR t);
WriteString (Outrile,Current .Qp~ame);
writein (Outrile);
writeln (Outrle);
writeln (Outrile,' SPECIFICATION');
writeln (Outrile);
XnTemp :- Current'.InputList;
if XnTemp <> nil then (AGenerate Input list 0)

begin
write(OutFile,INPUT 1);
WriteString (Outrile, InTemp .Name);

InTemp :- InT~p.Link;
while InTemp <> nil do

begin
write (Outrile,'
WriteString (Outrile, InTemp .Kame);
writeln (Outrile):
XnTemp :-InTemp'.Link;
end; (~while A

writeln (Outrile);
end; (* if *)

OutTemp :- Current" .Outputbist;
if OutTemp <> nil then

begin (~Generate Output list
write (Outile'OUTPUT')
WriteString (Outrile,OutT,,mp .Name):

* 203

Out~emp :"OutTemp.idnk;
while Outremp <> nil do

begin
wdte (Outib,'t
4irittstrin-g (outribe,OutTemp dName);

OutTen'p :~OutTep.Link;
end; (Awhile A

writein (Outrile);
end,- (4 if A)

StateTemip :- Cuent.StateLiat;
If StateTemp <> nil then

begin (A Generate tate list A

write (outril., 'STATZ 1[:
WriteSL ring (Outrile, Statemp .Nam);
writeln (Outrile);
State*remp :- SatcTemp".Link:
while StateTemp <> nil do

begin
write (Outrile,'
Write.String (outril., StateTemp .Ham.);
writeln(Outrile);
StateTemp :- StateTemp".Link;
end; (A1 while A4)

writeln (Outrile);
end; (a if A)

write(outrile,iNAxfimuH EXECUTION TIHE)
NriteString (Outrile, Current '.HLT);
writeln (Outirile) ;
writeln (Outrile):,

writeln (Outrile, 'ED');
Current :- Current".Link;

(A Dynamically create new file name '
if lodeName(41J 0 91 then

begin
NodeName(4lJ 11 0';
tlodeftme(40) :- ucc(NodeNazne(40));
end (Ait A

else
Hod*Name[41J : succ(klodeHame(41))1;

end; (A while A

end; (A MakePSDL *)

(--)

204

. procedure MakeData~tream (Heted: Datal'tr);

(* Generate PSOL Data Stream A)

var
Temp: DataRtr;
Oatfile: text;

begin
rewrite (Outfile, '/n/3uns2/rork/capa/prototypeh/padl.dI);
writein (Out file);
if Head <> nil then

begin
Temp :- Head;
write (Outfile,'DATA STREAH f);
WriteString (Outfile,Teaap ,?a'ue);
writein (Out file);
Temp :- Temp.Link;

while Tamp <> nil do
begin
writ. (Oiitfilet,
Writeftring (Outfila,Tehp .Na..);
writoin (Outfile);
Temp :- Temp^.Link;
end; (* while '

writeln (Out file);
end; (* if 0)

end; (* HakeDataStreamA

(A---A

* 205

begin m'taini)
LodakeSL(Opre); d OTLDa&ed DtTi
iaePSOct(rv~opIec, paldDt)ed atri
Hake~ataStream(Datallead);

and.

206

APPENDIX F ICON FOR GRAPHIC EDITOR

------------------------- ------------
P file: editor. icon
/ a purpose: icon for graphic editor
/0 author: roger thorstenvon
Pdate: dec 1969

r ormat-Ver31on-1, Width-.64, Height-64, DepLh-1, Validbitserita46

oxrrrr1 oxTFTF, xrrrrt oxrrrr, 0x6000, Oxoooo, 0x00001 OxQooo
Oxc6OO, OxOuOO, OxOQOO 1 OxOOO1I Ox8OOO, OxOOOO, 0x0300, 0x0001
0x8000, OxOOOO, OXoFo#OO, 0000 1 x8000, OxOOQOOxlDOO, OzOOol,
Ox8000, OxOOQO, 0x3300, OxOOOl,QxSOOOOxOOOO, 0x6500, OxOQOl,
OX80OO, Ox~OOO, 0x8600,OXOOOl, OXSOOO, QXOOOoO XSAOO, OXOO0l,
0x8000, OxOOOl,0xl200, OxOOOl, OxSOOOO x003, Oxl6OO-r 'tOOO1,
OxOOOO, 0x002, 0x2400, OxOO01, OxSOOO, QxOOO6, Ox24QQ, OxOO01,
OxBOOO, OxOOQA, 0x480, OxOO01, OxOOOO, 0x012, Ox9SOO, OxCOOl#
oxoo0x600 x4,ooxrooo, oxoool, 0x6000, 0x025, OxAOOO, OxOO01,
OxSOOO, 0x0045, 0x2000, OxOOOl, OxSOOO, OxOOSE, 0x2000, OxOOOl,
OxSOOO, OXOO8C, 0X4000, OXOOOl, OXSOOO, OXOOSC, OXOOOO, 0X002,
0x8000, 0x0388, OxSOOO, OxOOOl, Ox8OOO,0x0265, OxOOOO, OxOOl,
Ox8OOO, 0x0297, OxOOOO, OxOOOl, 0x8000, OxO4BA, OxOOOO, OxOO01,
Ox8OOO, OxO4A2, OxOOOO, OxOOOl, OxOOQO, OxO8C4, OxQOOO, OxOOOl,
OxOOOO,Ox~fCOOO~ oOO, OXOOOl, OxSOOO, 0x168, OxOOOO, OXOOOl,
0x8000, 0xl990, OxOOOO, OxOO~i, Ox8OOO, 0x3930, OxOOOO, OxOO0l,
0x8000, Ox2A6O, OxOOOO, OxOO01, 0x8000, Ox2BEO, OxOOOO, OxOOOl,
OxSOOO, Ox2ESO, OxOOOO, OxOO01, QxROOO, 0x4880, OxOOOO, OxOOOl,
0x8000, 0x4900, OxOOOO, OxOOOl, OxSOOO, OxD200, OxOOOO, OxOO0l,
OxSOOO, 0x9600, OxOOOO, OxOOOl, OxSOOO, QxACOO, OxOO3r, oxzool,
OxSOOO, OxC500, OxOO2l, x2001, Ox68O1, x7000, 0x0020, x2001,
aiBO1, OxCOOO, OrO3rr, Oxrz~l, 0x8003, OxCOOO, 0x0200,0x0201,
0x8003, OxOOOO, QxO2E5, Ox2AOl, 0x6002, OxOOOO, OxQ247, 0x3201,
0x8006, OxOOOO, 0x0235, Ox2AOl, Ox800C, OxOOOO,0x0200, 0x0201,
0x8008, OxOOOO, OxO3r, oxFol, oxlooo, oxooQo, oxooQo, oxoool,
OxrrrT, OxYFYr, Oxrrrr, Oxrrrr, OxSOOO, OxOOOO, OxOOOO, OxOOOl,
0x8000, 0x04l0, x2000, OxOOOl, Ox8OOO, 0x04l0, x2000, OxOOOl,
0x6000, 0x0400, x2000, OxOOOl, 0x6078, 0x7470,oxr878, OxISOl,
0x8084,OxflClO,0x2084,OxC4Ol,0x6084,0x84l0,0x2084,OxSO01,
Ox8OFC, 0x84l0, 0x2084, Ox8OOl, 0x8080, 0x8410, 0x2004, OxSO0l,
0x8084, Ox8ClO, 0x2464, 0x8002., x8078, 0x74l0, 0x1878, Ox8OOi,
0x8000, oxoooo,oxoooo, oxoool, oxrrrr, oxrrrr, oxrrrr, oxrrrr

* 207

APPENDIX G SSL SPECIFICATION

file; psdl.as.ssl
purpose: abstract syntax for psdl editor
author: laura j. white
date: 19 nov d9

-- 9

root ped1clcfqonants;

list padltotponents;

psdl.eomnnenta
: Pa~Ni~il()

I Padleair(component psdl components)

component
: oComponent()
I Data (id typespec type,.impl)
I Op(id operatorspec operator.impl)

id
: Xdull()
I Zd(IDEHTIrILR)

operator spec
* OpSpec(optional interface optional-keywords optional-description

optional-axioms)

type-spec
: TypeSpec(optional type declarations optional-operators

optional-keywords optional-description optional-axioms)

optional list optionaloperators;
optional operators

* OpListNil()
OpList(type_op_spec optional operators)

208

TypeOp~il()

ITypeOpSpec(id operator spec)

optional list optional interface;
optional-interface

InterlraceNil(
IInterraceList (attribute optional-interface)

optional optional requirements;
optional requirements

: eqmtsTrace~oneo(
I Reqw~ts~rompt()
IRecpntsTrace (id list)

optional optional keywords;
optional keywords7

: eayWordsNoneO)
I KeyWords'rompt()
IKeyWords (id list)

O optional optional-description;
optional-description

IntormalDesc~one ()
i nformalPrompt ()

infornialDesc (text)

optional optional -axioms;
optional axioms

irormalDtscwonsOC
Irorzualprompt(o
r ormalDeso (text)

attribute
EmptyAttr()

IInput (input optional requirements)
IOutput (output optioral requ.irements)
IStates(state optional requirements)
I Cenerio(generic optional-requirements)
IExceptions (exception optional-requirements)
ITimingInfo (optional met optional mcp optional art optional-requiremients)

I2

*XnputTypeDecl (type dcl moro-optional type ~declarations)

output
* utpUtTypeDecl (type dccl niore optional ty-e declarations)

state
*StateTypeDeci (typedecl. more optional typ. _declarations

exp optionaleOXP .list)

generic
*GenerIcTypeDeci itype dccl emor,_ptionaltype _declarations)

exception
*ExceptionList (id-list)

optional optional met;
optional met

: etNone()
I Hetpronpt(

I et(time)

optional optional mcp;
optional mcp

: Micpftne()
I H4cpprompt()
IMcp (time)

optional optional mrt;
optional mrt

:Mrt~one()
I MrtPrompt()
I Mrt(time)

time
Time (integer optional-unit)

integer
XntegerNil()

IInteger (INTEGER)

210

. optional optional-unit;
opt ional- unit

:UnitHil()
IUnitPrompt()

I Unit~s()
I UnitSec()

tI nitin ()
IUnitHr3a()

type dcci
Type~ecl(id list type name)

optional 11st MOzre optional type _declarations;
more -optional type declarations

kMoreDeclLiat~il ()
M oreDeciList (more type dccl more-optional type declarationh)

more -type _d cl
MoreDecl~il()
M orerypeDecl(id-list type nam)

. optional list optional-typejdeclarations;
optional type declarations

OptDeclbistNil()
IOptDeclLint (opt type deci optional type _declarations)

opt typo _decl
OptDeclklil()

IOptTypeDecl (id list type_name)

list idl1iat;
id-list

Id~il()
X dPair(id id-list)

type name
TypeName (id optional,_generic actuals)

211

optional optional,_goncric-actu*13;
opt iona I go nca ctuals

*GenActualtlIl)
IGenfttuall'rompt()
IGenActual (type-dacl nmore optional-type declarations)

ope rator ipl
pxmpl)

IOp~mplPadi (diagram optional streams optional-timers
optional control constraints optional-description)

IOplmplAda(id text)

type in~pl
*Typelmpl()
ITypelmplop (type name optional operator implementations)
ITypelmplAda(id text)

oioalitotoaoprtripeettos

optional litooaoperator implementations;

i ypeLiat~il()
ITypeList (type op_ impl optional operator izpl~mentations)

type-opiAmpi
TypeOplmpINil()

IType~p~hmpl (id operator itnpl)

diagram
Diagram(link optional links)

optional list optional-links;
optional links

LinkListNil()
ILinkList(opt,_link optional links)

opt-link
OptLinkNil()

IOptLink(id id optional-time id)

'ink
Link(id id optional-time id)

212

. optional optional-time;
optional tim*

QptTiMe~il(
IOptTimeftomipt (
IOptTime (time)

optional optional-atreams;
optionai3t reams

Streamsmil()
IStreamsPro'pt(
Stream: (type decl more optional type _declarations)

optional optional timers;
optional timers

imeraNIl(0
ITimers~rompt(
ITimers (id list)

optional optional control constraints;
optional control c onstraints

:Controlmil(0
1 Control~rompt()
IControl (constraint optional-constraints)

constraint
Constraint (id optional triggers optionalyptriod optional-finish

constraint-woptions)

optional list optional-constraints;
optional-constraints

OptConNil()
IOptConList (optional constraint optional-constraints)

optional constraint
OptConstraintNil ()

IOptConstraint(id optional -triggers optionalperiod optional-finish
constraint options)

optional optional-triggers;
optional-triggers

:TriggersNonej
I TriggersPrompto(

ITriggersChoice (triggers choice)

213

liriggcrscho cel ()

ITriggers (tziggor)

I TrIggersIX (opttrigger predicate optional requirements)

trigger
*Trigger~il()
I IllTrigger (id list optional-requirements)
ISomeTrigger (id list optional requirements)

optional opt-trigger;
optt igger

: OptTriggarkdl{)
IOptTriggerPrompt (

I OptAllrrigger (id list)
IOptSomerrigger (id-list)

optional optionaljpo.dod;
optional~perlod

Fo~r.,oAdNona 0)
PeriodProvpt(
Period (time optional requirements)

optional optional finish;
optional finish

: inish~one()
I rinishPronpt()

r inish (time optional requirements)

optional list constraint -options:
constraintoPptions

*ConList~one()
IConListOpts (con-opts constraint options)

con-opts
*ConOptsNil()
IOptOutput (id list predicate optional-requirements)
IOptException (id opi-ionalpredicate optional requirements)
IOptTimer(timer operation id optionalypredicate optional r;equiremnts)

214

timer operation
:Opt~il()

I Read()
I Reset()
I Start()
I stop()

predicate
Predicate (relation optional boolean-relations)

optional optional ,predicate;
optionalpredicate

:OptPredicate~il ()
IOptftedPrompt()

OptPredicate (relation optional-boolean-relation.)

relation
Relmil(0

I 1elSiuip1. (siuple expression)
I PelCoaplex (siumple expression relational operator simple-expression)

booltan relation
iool~one()

IAndRel(relation)
IOrRel (relation)

optional list optional boolean relationx;
optional 'boolean relations

RelList~il()
IRelList (boolean relation optional-boolean relations)

simple-expression
SimxpNil()

ISimlnt (sign integer optional-unit)
ISimReal (sign real)
ISimld (id)
ISiai~otid(id)
ISimString (string)
ISimnPred (predicate)
ISim~otPred (predicate)
ISimTrue()

I Simralse()
I Sim~otTrue()
I Simliotralse 0

215

optional list optonalcxpiat;
opt ional lexp ist

i EpLint~Iil()
E xpLiot (optional exp optional-exp_,liat)

optional exp
6 ptExp~4il()

I ptlxpConst (constant)
IOptEXpld(id)
IOpt~xpCouiplex(typejiame id exp optional .xp_,list)

exl,
*Exp~il()
IExpConst (constant)
IExpld(id)
IExpComplex(typename id exp optional-exp_ list)

3tring
*String (text)

text
*TeXt(id)

sign
*Sign~il()
ISign (SXI~I)

real
*RealNil()
IP-Re al(P REAL)

relational.-operator
: Relflone()
I RelLt 0
1 RelGt I,)
I RelEq()
I Rd _He()
I Rel Coo)
I Re _Lte()
I Re _Gte()

216

COnatant
Conat~one()

ICon~t~nt (intae)
IConat~ta(real)

I Con3tTzue()
I Contralse(o

217

APPENDIX H SSL SPECIFICATION

file: p3dX.up.331
purpo3e: unparaing rulea for padi editver
author: laura 4. v#hite

date: 14 nov 89

psdl -component3
*Padl~iX 0:

Psd3Pair

component
* koComponent (":"%n(component)*)

IOp (":"%nQPE~kATOK ~*
Data 1':*%nTYPZ ~

id XdNull (@::-"<identifier>")

IId

ope rator rpe c
op~spec (""nPCrCTONt"^"bnNO

typespec
TypeSpec V : "%nSPECZTICATXOH%t------- %b~nEND")

operator imp.
*Oplmpi (9: %n operator implementationi Ni
IOp~mpIPadl [W:%nIMPLEHEHTATXOH~t -------"%b%nEND")

I OplmplAda [9:"%nIMPLZMENTATOI ADA "'"%t%n("-")%b%nZHD")

type iznpl
: Typelmpi (9:"%n~type implementation]"]
ITypelmplOp f9:"%nXHPLEHENTATIOk%t%n"--"%b%nEND"I
ITypeImplAda (9:%nIHPLZMENTATIQN ADA 0""%t%n("")%b%nEND")

218

optional-operatoza
OpLL3t14IJ (00

typtops pt C
TypeOpmil (':'Or(optiona. operator)")
Typeopspec (":%nKzRATOR ~

optional inter face

IInterraceLiat WO:061

optional requirements
Re7qmtArrave~one (W)

I Feqmts~rompt (S:0%n(requirements)J]
ReqmtMTraCe (6:"%nBY RZQIJMMTS%t~n'%b"3

optional keywords
i*.yWoxdsNone 16:1

IKey~ords~rompt (4:4%n(kywordali)
IKeywor~ds (10nZWRStn-%*

optional description
ZnformalDeacHone (6:1
X nformalPrompt (4:4%n(description)

I nformalDeac (6:"%nDKSCRIFTZOH~t%n(Q^*j~bO1

optional-axioms
Tormaloesc~one (6:)

IrormalPrompt (S:*%n(axioms)*)
r orasalDesc (6:"%nAXO5S%t~n(Wf)%bui

attribute
EmptyAttr (':O%n(interfac*)"j

X nput (':O%nXNUT'%t*%bu
Ioutput :'OTT"*tNbj
IStates (-:%lTATESOa*%tO-bUj

IGeneric -:P%nGEHERXCO'%t"%b*)
IExceptions (-:u%nEXCPTNS%n"^^%bO]
ITimingInfo

219

I nputTypeDeel

output
?OutputTypenecl ['*tn*0b1

state
: Stat*Typ*eOcCX ('"tn"%XXTALtl^l

generic
GetterieTypeDecl (: tn~%"

exception
ExceptionLiat (:

optional-met
HetNonct0:

I et~rompt (0:"%n(met)*)
I Met WQ"WnAXIMU4 EXECUTION TIME U

optional mcp
:Hcp~1ont W6)

I McpPrompt (0:"%ntmcp)"1
1 Mcp j0:"%nHINHIMUM CALLING PERIOD "

optional mrt
MrtNone (0:0

IMztPrompt (Q:w%n(zut)*)
I Mirt (6:0%nMAXIMU4 R~ESPONSE TIME "

time'

Time

integer
IntegerNil (@::-."<integer>")

IInteger [:-

optional unit
UnitHil (60]

IUnitPrompt (W: (units)")
IUnit~s [0:0 MS")

220

I UnitSec tf:SEC")
IUnitNin tw: MIN-)
IUnitllr3 to:* HOIJR5)

type decl

muore -optional type declarations

tioraDecl~iatlU (:

saore Ttype dc)
Hor*Declik~l (-:,n(move type decls)"J

I orcTypcDecl :,nu U

optional type declarations
OptDclLitl2 W):

IOptDeclList (E101

opt type decl
OptD*Cllil (V:Q~n(optional type decl)")
O ptTypeDeCl 1(:UPnuuw : -

id lit
: dNil.(:-
X dPair (:-(6

type names
TypeName

optionalgenexic actual3
GenActuali ()

IGenActualPrompt (0:0 (generic actual paramteras)1
IGeriActual

optiornal ape rator _implementations
TypeLiatNil (6:1

ITypeList :(I

type _Op-impi
TypeOplmplNil (':%n~operator implexientation)"J

221

ITypa~p~mpl (^:"SnOERATOR 'I3

diagram~
*Diagram ~ V ~GRt,"b

optional links
inkList~Lil (9:1

ILinkList (WOO)0

opt-link
*OptLink~il tV:"%n(optional link)")
OptLink

link
Link

optional time
ptTime~il (:

IOptTimePromnPt (W: (time) "
IOptTime

optional streamns
*Streama3l 9:
IStreamsprompt (0:"%n(data stream)")
Istreams (G:"'.nDATA STREA%t~nN""%b"I

optional timers.
*Timers~il to:]
Timer3Prompt (9:%n(timer)"]

ITimers(6"TIZtn"b1

optional control constraints
ControlNil 00:

IControlPrompt (8:"%n(control constraints)"]

I Control (9:"%nCONTROL-CONSTRAXNTS~t"'f"mb")

constraint
Constraint [^:w%nOPERATOR W^ Id"

optional constraints
* OptConNil [8:)

222

IOptConLiat 016

optional constraint
OptConstraint4il :

IOptConstraint [':"%nOPEIKATOR 4t ----- %b"I

optional trigge rs
T'riggearskone (0:)
Tggeraft=-cpt [("tr~r.ggerSjj

ITriggeraChoice t@6:nTRIGGERZD "

triggers choice
Triggez:Choice~il (W:"trigger choice)")

ITriggers to:')
ITrigger3If (4:-w xr"~

trigger
Trigger~il (o:4(triggerj"I
AllTrigger (It:DY ALL 0-1

ISomeTrigger E(OBY SOM4E 'I

. opt-trigger
OptTrigger~il (0:)
OptTriggerPzrompt (W:(trigger by) "

IOptAliTrigger (8"BY ALL "'I
IOptSomeTrigger (@:"BY 50HZ "

optionalyperiod
Periodmone (:
PeriodPrompt W0"%n(period)"I

IPeriod (0"WEPRIOD ""I

optional-finish
rinishNone (60

IFinishPrompt t60%n(finish within)")
r inish [80%nrINISH WITHIN ""I

constraint-options
ConList~one [0:)

IConListOpts 0(0

* 223

con-opt3
ConOpt~lifl (:;"%njconstant options)")

IOptOutput (;:"%nQUTPUT "^" Xr "
IOptException (':"%nEXCEPTIOI"N
IOptTimer (':'%n"^'"~

timer -operation
*Opt~il (8:R(t.mer operation)"]
IRead (@,'"READ TIMR)
IReset (@:"RESET TIMER")
Start (0:'START TIM4ER")

IStop 19:"STOP TIMER")

predicate
*Predicate

optionalpredicate
*OptpredicateNil 160
IOpt['redPrompt I@:" (IF predicate) "
IOptPredicate (9"IF)

relation
*Relilil (E:(relation)"J
IRelSimple (0:1
RelComplex (:%~".. V

bool1.a n re lat ion
*ioolHone ("(boolean relation) "

IAndRel ("AND "
IOrRel ["OR "

optional boole an relations
*RelLi3tNil (9:]
IRelList 9)

s imple -eXpre33ion
*SimExp~il [9:"(simple expression)"]

ISiz'Int* -
ISinReal 9 J
ISimid (:
ISimNotld (9:NOT "^1
ISimString0:
ISimPred W':]
ISiinNotPred [8:NNOT "

224

ISimiTrue (W:TRIJE")

ISituralae (6:FALSE"I
ISim)~otTrue (@:"NOT TRUE")
ISimNotralae (WN"OT rALSE")

optional exp_.,ist

I xpJ4.st 16:1)6

optional exp
Opttxpxil (:,nspO

IOptExpConat
IOpt~xpld

exp
zxp~il (6:"exp)")
ExpConst (6:

IExpld (:
IExpComplex

string
String

text
Text(:6

sign
SignNil je::-"<uign>"J

ISign @:^

real
Realmil [@::-"<real>"]
P FReal(6:J

relational-operator
:Rel - one (6:0 (relational operator] "

I Rel-Lt (6: < "]
IRel-Gt (6: > "
IRel-Eq (o:" - "
IRelHe (6:" /- "

I Rel Co E6:" : " I
IRei7Lte (6"<M "I

* 22S

Con~tilone (gW(conatinnt)IJ
IConstXnt
IConstReaX 0:
IConstTrue (9:'TRUE")
jConstFalse (:FLE

22 6

APPENDIX I SSL SPECIFICATION

file: padl.lex.33l
purpose: lexical rules for padl editor
author: laura J. white
date: 13 nov 89

--- I

XDENTXFIER: IdentLex< (a-zA-ZJ(a-zA-Z0-9)* >;
WHITESPACE: 14hitespaceLex< (0 >;
XNTEGEI: IntegerLex< (0-91* >;
PREAL: PRealLex< (0-91*"."(0-9)* >;
SIGH: SignLex< [-+] >;

0227

APPENDIX J SSL SPECIFICATION

file: psdl.ad.asl
purpose: attribute declarations for padl editor
author: laura J. white
date: 13 nov 89

Xdent (synthesized id t;);
Xd list (synthesized idllist t;);
PSDL sign (synthesized sign t;);
MSDLint (synthesized integer t;);
PSDLreal (synthesized real t;);

id - Ident.t;
id list ' Xd list.t;
sign - PSDLasign.t;
integer - PSDL int.t;
real - PSDLreal.t;

228

APPENDIX K SSL SPECIFICKI-(ON

/* - --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --

file: padl.ci.al
purpose: concrete input syntax for padl editor
author: laura J. white
date: 13 nov 89

-- 'I

Ident :: (IDEI4TITER)

(Ident.t - Xd(IDEHTfl'XER););

Id-list :-(Xdent)
(Id-list.t - (Ident.t::XdNil);)
I(Ident ',' Xd list)

PSDL sign :-(SIGN)
(PSDLs3ign.t -Sign(SIGN););

PSDL mnt :-(INTEGER)
(PSDL-int.t -Integer(INTEGZR););

PSDL real :-(PREAL)
(PSDL-real.t - Real(PREAL););

229

APPENDIX L SSL SPECIFICATION

file: padltt.ssl
purpose: template transformations for psdl editor
author: laura j. white
date: 12 nov 39

transform component

on "type"
<component>
Data (<id>, <type s3pec>1 <type _izpl>),

on "operator*
<component>
Op (<id>, <operator spec>, <operator _impi>):

trans form type op_ spec

on "enter-operator"
<type op_,spec>
TypeOpSpec (<id>, <operator spec>);

transform attribute

on "input"
<attribute>
Input (<input>, <optional requirements>),

on "output"
<attribute>
Output (<output>, <optional requirements>),

on "states"
<attribute>
States (<state>, <optional requirements>),

on "generic"
<attribute>

230

Gener~ic (<generic>, <optional requir~ments>),

on "exceptions"
<attribute>
Exceptions (<exception>, <optional-requirements>),

on otiming info"
<attribute>
Timing~nto (<optional met>, <option&1-wcp>, <optional art>,

<optional requirements>) ;

t ransform more typejdci

on "enter typedeclaration"
<more type dccl>:
HoreTypeDeci (<id-list>, <type name>);

trans form opt,_type decl

on "enter type declaration"
<opt,_type-decl>:
OptTypeDecl (<id-list>, <type _nae>) ;

transform optional generic actuals
on "enter _generic actualyparameters"

<optional,_generic~ctualz>:
Genhctual (<type-dcl>, <More optional type _declarations>);

transform optional-requirements

on "enter requirements"
<optional -requirements>
ReqmtsTrace (<id-list>);

transform optional-keywords

on "enter-keywords"
<optional-keywords>
KeyWords (<iV list>);

transform optional-description

on "enter description"
<optional -description>
InformalDeac (<text>);

* 231

transform optional axioMs

on "enter axioms"
<optionalaxioms>
FormalDes(<text>);

transform optional-time

on "enter time"
<optional time>
OptTime(< time>);

transform optional met

on "enter MET"
<optionalmet> :
met (<time>);

transform optional-mcp

on "enterMCP"
<optional mcp> :
Mcp(<time>);

transform optionalmrt

on "enterMRT"
<optional mrt>
Mrt(<time>);

transform optional-unit

on "milliseconds"
<optional unit>
UnitMs(},

on "seconds"
<optional-unit> :
UnitSec(,

on "minutes"
<optional unit> :
UnitMin(0,

on "hours"
4optional unit>
UnitHrs();

232

.transform optional-requirements

on "etrrqurmns
<optionaljrequirementa>
Ren~t3Trace (<3d list:>);

transform optional-streams

on "enter streams
<optional-streams>
Streams (<type decl>, 4:e-..optional-typ4 dclarationa>);

transform optional-timers

on "enter-timers"
<optional-timers>
Timers (<id-list>);

transform optional-control-constraints

on "enter control-constraints"
<optional control consatraints>
Control (<constraint>, <optional-constraints>);

transform optional-constraint

on "enter constraint"
<optional constraint>
OptContraint (<id>, <optional trigg*rs>,<optionalperiod>,

<optional finish>, <constraint options>):

transform operator_impi

on "padi implementation"
<operator-impi>
Oplmpiradi (<diagram>, <optional streams>, <optional-timers>1

<optional control-constraints>, <optional description)),

on "ada implementation"
<operator _impi>
OplmplAda (<id>, <text>);

* 233

transform type inipl

on "padliplementation"
<typeimpl>
Typolmplop (<typc nsne>, <optional-operator-i pleientatione>) t

an "ad# implementaition"

TypeXmplAda (<id>1 <text>);

t-anfe= optio natrgger2

on "enter-t riggers"
<optional triggers>
TriggersChoice (<trigjgers-choicc>);

transfor~m trigger3schoice

on mimple-trigger3"
<triggcrschoice>
Triggers (<trigger>),

an "trigger3swithJ.!fypredicate"
<triggers-choice>:
Triggerslf (<opt trigger>, <predicate>, <optional-rquirosutnts>);

transform trigger

on "all"
<trigger>
AllTrigger (<id list>1 <optional requirements>) 1

on "some"
<trigger>
SomeTrigger (<id list>, <optional requirements>);

transform opt-trigger

on "all"
<opt trigger>
OptAlTrigger (<id-list>),

on "some"
<opt -trigger>
OptSomeTrigger (<id list>);

234

transform optionalperiod

on "entor-period"

<optlona\.yerioi>

transform Optional - inish

on "enter finish within"
4optionz! linizch:>
Finish (<time>, <optional requiromnts>);,

transform con-opts

on *output"
<con opts>
OptOutput (<Id-list>, <predicate>, <optional requixemnts>),

on Oexception"
<con-opts>
Opttxception (<id>, <optionaljpredicate>, <optional requixements>),

on *timer"
<con-opts>
OptTimer (<timer operation>, <id>, <optionalypredicate>,

<opticonal requirements>);

transform optionalypredicate

on "enterypredicate*
<optionalypredicate>
OptPredicate (<relation>, <optional-booltaanyrelatione>):

transform timer-operation

on "read-timer"
<timer -operation>:
Read 0 1

on nreset timer"
<timer operation> :
Reseti 0l

on "start timer"
<timer operation>:
Start(T,

* 235

on "Stop-timer"

stop();

transfoMrmzelation

on "simplz"
<relatioa>
RclSimple (<3imipleexpresIon>)#

onl "com~plex"
<relaticn>
RelComplex (<simple-eXPression>, <relational operator>,<simple expreusion>);

transform siMPle expre3sion

on "integer exp"
<simple expreasion>
Sim~nt(<sign>1 <integsr>, <optional unit>),

on *real-xp
<simple expression>
SkimReal (<sign>, <real>),

on "idexp"
<simple expression>:

on"otsidle expresin

<simple expression>:
SimHotldX(<id>)t

on"string_ exp"

SumString (<string>),

on"predicate exp"
<simple expression>:
SiinPred(<predicate>),

on -notyPredicate-exp"
<simple -expression>
SinmNotPred (<predicate>),

on "true"
<simple expression>
SunTrue 0,

on "not-true"

236

*.43mple expression>;
Sim~otTrue

on "false"
<simple expression>:
Sunralse),

on "not falsou"
<simple, expression>:
Simmotralae0;

transform relational-operator

on "<"

<relational-operator>:
Rei-Lt 0,

on "<-"
<relational operator>:
Rel-Lte 0,

on 0>0

<relational-operator>:
RelGt{),

on *>-"

<relational-operator>:
Rel Gte 0,

on "-"

<relational-operator>:
Rel-Eq 0

on WM
<relational-operator>:
P.l-e 0

on :
<relational-operator>:
ReXCoO);

transform exp

on "constant"
<exp> I

ExpConst (<constant>),

on mid"
<exp>

0 237

on "complex"
<Cxp>
ExpConmplex (<type-nazne>, <id>, <exp>, <optional explint>) ;

transform optional exp

on "constant"
<optional exp>
OptExpConst (<constant>),

on "id"
<optional cxp>:
OptExpld (<id>)t

on "complex"
<optional exp>:
OptzxpCoznplex (<type _name>, <id>, <exp>, <optional .xp lIint>);

transform constant

on "integer"
<constant>
Contlnt (<integer>),

on "real"
<constant>
ConstReal (<r:eal>),

on "true"
<constant>
ConatTrueo(,

on "false"
<constant>
Conat~alse 0;

transform opt-link

on "enter link"
<opt link>
Opt~ink (<id>, <id>, <optional time>, <id>);

transform type_op__imnpl

on "enter operator _implementation"

238

<type op in~pl>
TypeOplmpi (<id>, <operator impi>);

transform boolean-relation

on "and relation"
<boolean relation>:
AndP~el (<relation>),

on "or relation"
<boolean relation>:
OrKel (<relIation>);

* 239

APPENDIX M KODIYAK TRANSLATOR SPECIFICATION

--

I File: translator.k
I Author: charlie altizer
I Date: dec 88
I Last Modified: dec 89 by laura j. white

I --

Idefinitiona of lexical classes

%define Digit :(0-91
%define Xnt :lDigitj+
%define Letter ta-zA-Z I
%define Alpha :((Letter)j(Digit))
%define Blank : (\n',
%define Char :(1)M
%define Quote :('J

I definitions of white space

(Blank)+

I definitions of compound symibols and keywords

GTE
LTE
NEWV
ARROW
TYPE :typeITYPE
OPERATOR : operator IOPERATOR
SPECIFICATION : specificationjISPECIFICATION
END ;endIEND
GENERIC : generic IGENERIC
INPUT :inputlINPUT
OUTPUT : output IOUTPUT
STATES : states ISTATES
INITIALLY : initiallylIINITIALLY
EXCEPTIONS : exceptions IEXCEPTIONS
NORMAL : normal: NORMAL
MAX EXEC TIME :miaximum[]execution[ItimeIMAXIMUMf]EXECUTION[)TIME
IMXRESP TIME :maximwm(]response[]timeIMAXIMUM(]RESPONSE[]TIME
MIN CALLPERIOD :minimum[]calling(JperiodIMINIMUM[]CALLING[)PERIOD

240

HICROSEC microsec I ICROSEC
HH S :Ms IHS
SEC :30CISEC

MXN :minIKIN
HOURS : hours IHOURS
BY :by(]requirementalflYE JREQUIR.14ENTS
KEYWORDS :keywords IKEYWORD3
DESCRIPTION :description IDESCRIPTION
AXIOMS : aXiomASI AXIOMS4
IMPLEMEN4TATION : implemntation j IPLEKENTATION
ADA :adaIAdaIADA
GRAPH :graphIGRAPH
DATA -STREAMi :data(IstreamiDATA()3TREA4
TIMER :tiaerlTXMZR
CONTROL : control (J constraintalICONTROL()COW4STRAIMTS
TRIGGERED :triggerediTRIGGERE.D
ALL :by(lalllaYc)ALL
SOMtE :by(JIomeIBY1 1SOME
PERIOD : period IPERIOD
rINISH :finish(jwithinjrIwISK(]WITHIN
EXCEPTION :exceptionlEXClTION
READ :read(JtiimerIREAD(ITIM43I
RESET :reset(jtimuerIRESETt)TIMER
START :start(ItimerISTART(3T114U.
STOP :stop(JtimaerISTOP(jTItER
xI F :ifixr
NOT : U- I 'not" I"HMO

W AND :w&*juandujwAND"
OR :uI4Iuorfl"OR0
TRUE :truelTRUE
FALSE :falsejI ALSE
ID : (Letter) (AiphalA
STRING LITERAL : (Quote) (Char)*(Quote)
INTEGER LITERAL :(Int)
REALLITERAL :(Irlt)w.0(Int)
TEXT7w1Chr*"

I operator preceder -33
1 %aleft means group and evaluate from the left

*aleft OR;
%aleft AND;
%aleft NOT;
%aleft "<F I '>e I'at, GTE, LTE, NEQV;
Fileft 1:1;

* 241

I attribute declaration* for nonterminal symbols

start trn: string; 1;
padl (tin: string;

uncond-output-map: atring->3tring;
out cnv: atring->strinq;
In ;ny:stinfl->stiing; 3;

.:ccponent (trn: string;
uncond output map .in: string->atring;
uncond output map oput: string->atring;
in env:7string->string;-
out env:3tring-'string; 1;

data-type (tin: string;
in env:string->string; 3

operator (tri: string;
unconci output map_in:string->string;
uncond -output map out: string->string;
ma,.ny: tring->atzring;
out env:3tririg->string; 3

typespec Ctrn: string;
in -env:3tring->3tring; 3

type decl 1 list I trn: string;
in.-env: string->string; 3;

type decl (trn: string;
in_env,out-eny :string->3tring;
opid: string;
acti4on code: string;
ucond-output:string; 3

opapec-Olit C tin: string;
in-env:string->3tring; 3

operator spec Copid:string;
ds 'decl: string;
state decl:string;
ucond -output: string;
excp_.decl: string;
in-env,out-env :string->3tring;

interface Cin-env,out-env :string->atring;
in-parm, out parm : string;
ds-decl: string;
state decl: string;
eXCpjdCl: string;
ucond output : tring;
opid:string;);

attribute Cdasdecl: string;
in-env,out-env :atring->3tring;

242

inyar.n, outyarm: string;
opid: string;
3tate ducd: tring;
ucond output: string;
excpdeOcl:string; 1;

time Ctrn: string; 1;
unit value: int;);
id-list (tin: string;

action cod.: string;
tnam: string;
opid:3tring;
ucond -output: string;
count : int;
expenv: int->3tring;
in env:string->string;
out *nv:st rinq->string;)

raqmts trace (trn: string;);
functionality (trn: string; 1;
keywords (trn: string;);
informal desc (trn: string; 1;
formal deac (trn: string; 1;
type~impi (tin: string;);
opimplO list Itrn: string; 3
operator _impi (trn: string;

out env: string->string;
inenv: string->string;
uncond output map: string->string;
loc-ds-decl:3tring;
timer deci: string:
opid:s;tring;)

psdlimpl trn: string;
parent : string;
uncond output map: atring->string;
in-env:s tring->string;
out env: string->3tring;
locds decl: string;
timer decl:string;)

data flow diagram (tin: string;
in-env, decl map : string-> string; 3;

link 0 ist (trn: string;
in-env,in declo,out decla : string->string: ;

link (trn: string;
in-onv,in decla,out-decla : tring->atring;)

opt,_time Itrn: string; I
type _name Ctrn: string;)

* 243

timers (trn: string;)
control constraints (trn; string;

parent : string;
uncondioutput map string->string;
in env:3t ring->3tring;
out CnV:s tring->string;
decl map : string->string;

constraint-optiofl tirn : string;
in env: 3t ring->3tring;
out env:st ring->stining;
opid: tring;

more constraints (trn : str~ing;
parent: string;
uncond OutputpapP: tring->3tring;
In env string->atring;
out:env: string->string;
dccl pap : tring->string;

opt trig (out env:strinq->string;
ine;nv: string->3triig;
streAMs check: string;
end if ;treams:string;
prd: string;-
end -ifpred: string;

trigger (if: string;
end -if:string;
in_.env, out -env:string->string;)

optyper (trn: string;);
opt fin -w(trn: string; 1;
streams (trn: string;

in-env, out env : string->st ring; 3
timer op I trn: string;);
opt ifpredicate (if: string;

end-if:string;
parent: string;
in env : string-> string;)

predicate (tin: string;
in-env: string->3tring;
type: string;);

expre331on-list (trn: string;
count:int;
exp__env:itt->sting;

expression (tin: string; 3
relation (tins. string;

in -env: string->string;
type: string;);

simple expression (tin: string;

7A

parent: string;
in -env: a tring->atring;
type:3tring;)

iel-op (trn: string;
left-op: string;
right-op., string;
opnI.type: strning;
parent: string;)

sign (tin: string;);

lattnbute declarations for terminal symtbols

ID(%teXt: string:):
TEXT(%text: string;)
STRING LITERALI %text: string; 3
INTEGER LITERAL(%text: string; 3
REAL LlIERAL (11text: string: ;

Ipsdl grammuar

start
;padi

toutput(("with PSDL SYSTEI4;\nube PSDL SYSTEH;\npackage TL is\n",
padl.trn, 3end TL;\nQ]);-

psdl.in-env - padl.out-env;

component padi
Cpsdl(l].trn - (coeponent.tn,\nO,psdl(21.trn);

padl(1J.out-env - component.out_*nv +1 psdlf2j.out_*nY;
padi (1] .uncond-output-map - component. uncond, output maap out

+1 psdl(21.uncond-output map;
component.in -env - psdl~lI.ind4nv;
component. uncond, output map_in - psdi (23 .uncond output map;
psdl[2l.in-env - padl(l).in-*ny

psdl.trn
padl.out-env - ((?:string:""));
psdl.uncond-output map - ((?:string:"i"))

component
data -type

coaiponent.trn U;

component.out -env - ((?:string:""));
component .uncond-output map out - ((?:string:""N));

* 245

data type. in env - component. inc nv;

Ioperator
Icomponent.trn -operator.trn;

component.out env - operator.out-onv;
component. uncond output mapo.ut - operator. uncond-output mapoput;
opezrator.in -env ;; compontnt.inienv;
operator. uncond output map-.in - coimponent .uncond-output mapin:

data-type
TYPE ID type apec type imipl
Idata type.trn- ;

type o3pec.in-env - data-type.in env;

operator
OPERATOR ID operator spec operatorjimpl
operator.trn -

(operator.in -env (ID. %text'"CONSTRUCT") -"composite-pe~rator"

-> ("\npackage M",

ID. %text," SPEC ia\n", oporator spec.ds.decl, "\n",
operator in~pl.l c d3 deal, "\nm",
operator 3pec.3tate dccl, "\n",
operatorjimpl .timerdecl, "\n",0
operator spec.excpdaecl, "\nend ",

ID.%text, "-SPC;\n",operator..impl.trnl

operator. uncoid-output nap.out
((ID.%text:operatorspec.ucond..output));

operator spec.opid - ID.%text;
operator-spec.in env - operator.in-env;
operator-iznpl.opid - ID.%text;
operatorjinpl.in env - (("PARENT":ID.%tOxt)) +1 operator.in_*nv;
operator impl.uncond -output map - operator.uncond-output niapin;

operator.out-env - operators3pec.out-ofv +1 operator impl.out-eiv

type-Spec
SPECIFICATION type decli1-list op__spec 0 list, functionality END

type spec.trn - ",
type-decl_1 list.in-env - type spec.in-env;
op_spec_0_lis3t.in-env - type spac.in-env;

U46

typeodecll.liat
type dec].

type dacll1liat.trn -typejcecl~trn;
type decl.action-code .- "type";
type dccl. in env -type declllist .ineony;

(type dccl_1_list.trn -N;

type dccl
id-liat 1:' type name

type decl.trn - id-list.trn;
type decl.out env - id-liat.outeonv;
type_decl.ucond output - id list.ucond output;
id list, in env :; type decl~l ienv;
idlist .action code - type decl.action cods;
id-lint.tname ;; type name.trn-
id-list.opid -type decl.opid;
id l12t.count -1;

idlist.exp_.env -((?:int:""fl;

id-list 1:1 type name 1,0 type dccl
Itype decl~l) .trn - id-list.trn typd.4cl(2.trn;
type decl(l1 .out eziy - id-liat.out-env +1 type decl(21 .out-eiw;
type decl.ucond output -dlist.ucond output

-type _decl(2] .ucond output;

id list.in env - type decl[1).in env;
idlist.action code - type decl(lJ .action code;
idlist.tname ;: type _name.trn;
idliat.opid -type deci 1.opid:
id-list.count -1;

idlist..xp.env -((?:int:""fl;
type decl(21 .in env -type decili l.in env;
type-decl(2] .opid - type decili).opid;
type_decl(21 .action code - type _decljl].action_code;

opspec_0list
op spec_0_list OPERATOR ID operator spec
(op._apec -0 liat(l1.trn - "

operator apec.in env - op_s.pec_0_list.in env;
opspec-6lit[2.in-env - opspcit(Jie;

(opspec-Olit.trn -0

* 247

opo ratoa-pec

SPECIFICATIONI interface functionality END

,jperAtor_3pec. state decI3 interface. atate-decl;
op. ratera3pec. excpdecl interfacs.*xcpdeal;
operator spec. ucond-output -interface. ucond output;
operators3pec. out env -

(interface .out -env (operaktor apeo.opid""ZNFAHW) - II
isntczface.ouenv (operatoraope.opid'"OUrIANI") -
-(((operator 3pec.opid"POCCALL"):

(interface .out e nv (operator apec.opid-"IN'ARO)
interface.outenv(operatorapo.opidOUTPAAH"))))

(((operator apecopid""ROCCALL"):
(interface.oute. nv (operator speo.opid'"ZNA.HO) ,,
interface.oute.nv (oper&tor spec.opid"OUTFAN4M))))

+1 ±Interface.out env;

into rface.in env -~ operatoriapec. in-env;
interface .opild - operator spec .opid;

interface
interface attribute reqmt3 -trace

.Lnterfacell).d3_decl3 -
(interfacm(2J.A3 decl# "\n",attribute.da decl);

interface(1) .itate -decl _
inefc(1) excp ec2)3a - dc,*atiue3aedc)
inefc(ntexce(j atat del"ntrbue5aedc

(interface(2) .excp dccl, "\n~fattribut.xcp dccl);
interface(1) .inparm -interface(2) .inyparm ' attribute.inyparm;
intertace(l) .outyparm interfacef 2) .outparm 'attribut*.outparu;

interface(l) .out env
U (interface 1) .opid^"NPARM") :interface(1J .inyarm)

((interface(1) .opid"UTPARR) :interface(1) .outyparm)
+1I it~terface (2).out-env +1 attribute.oute.!nv;

interface (13 ucond output - interface (2) .ucond output
.alu.ribute.ucond-output;

interface(23 .opid - interfacet(11.opid;
interface(2J.in-env - interface(13.in env;
attribute.in-env - interface(ll.in-env;
attribute.opid - interface(1] .opid;

(interface.dasdecl-
interface.3tate-decl
interface.excpjdccl -bN

24

interface.Lnparm~
intecface.outypar mU
intecface.oot-esw-(7atigvl
intezfcemucond output

attribute
GEI1IRXC typejiecl

Itype dccl.action-code-
type decl.opid - attribute.opid;
type decl~in env -attribute.in env;
attrIbute.ot env type decl.out-eiw;
attribute.do ed --
attribute.atate decl ;
attribute.excp dccl ""
attribute.inyarm -on
attcibute.outjparm o n;

attribute.ucoid output ;

XNIPUT type decl
type decl.action-code - *input*;
type decl.opid - attribute.opid;
type Tdecl in env -attribute. in env;
attribute.out env type dccl out-env:
attribute.ds decl -type decl.trn;
attribute.state decl - ;
attribute.excpdaecl '. on;
attribute.inyparm -type _decl.out env(attribute.opid"IKIPAMa);
attribute.outyparm o n;

attribute.ucond output

IOUTPUT type-dccl
type decl.action code Ooutput";
type decl.opid -attribute.opid;
typejecl.in env -attribute.inetnv;
attribute. o% tenv type decl. out. env;
attribute.da decl -type decl.trJ;
attribute.state decl -";
attribute.excp dcl
attribute.inparmUN
attribute .outparm - type declout erw n(attribute.opid'"OUTPANI")
attribute. ucond output - tEype dccl. ucond output:

ISTATES ±i2 list 1:1 ID 1111TIALLY expression-list

id-list.action-code - "states";

* 249

id liot~count -1;
ic-iit. cxp onv e xpres~ion liat ..xpenv;
id&11t.inconv attributeJ3 nv;

expreasion lint.count -1;

attributt.d3 decl
attribute. ,tate dec3. id-liat .tn;
attribute.excpctecl " Re;

atibute.inparm ON;
attribute.,out~parm - "
attribute.ucond-output -

IEXCEPTIONS id list
id l13Caction code -"excp*;

id -list.opid attribute.opid;
&d-it.COUnt -1;
id -list.exp_.env
id l13t, in env - attribute. in_.env;
attribute .out env -id -list .out-env;
attribute.dsjtecl
atribute.atate-decl
attribute.excp dccl tid-list.tnn," PSDL-EXCEPTXON;\nl);
attribute.inyParm - ""; 0
ottribute.outpim -";
attribute.ucondpoutput

I AXEXEC TIME time
attribute.ds decl-
attribute.3tate decl
attribute.excp jecl
attribute.out env - ((?:string:**));
attribute.inyparm
attribute.outjparm ;

attribute.ucond-output

IMINCALLPERIOD tim~e
(attribute.d3 decl
attribute.state-dccl
attribute.excp dccl- ;

attribute.out-env - { (?:3tring:""));
attribute.inyparm -

attribute.outyparm-

250

attribute.ucond output

I MX RESP_TIME time
attribute.d3 decl
attributs.3itate decl 00
attributeexcpdec. 00
attribute.oute.nV - (?3rn:")
attribute.injpaxm - 00;
atribute.out-arm -10
attribute.ucond output -

id-lit
ID let id-list

Iid-list(,iJ.trn
(id list(l).action code - "input" I
idlittl.4 .action _cod. - "output"

-(id liat(l.in env(id lhat~h .opid^0PARMN") so
-> ("package DS",MiDtext," is now 0.

(id " latfi] .in env(ID.%text'"DUrr TYIPZ") - ffo
-> rxro niBuFE"

*"(",id list~h .naane,") ;\n"J
* ("package DSO,ID.%text," renames "

id list(1J .in env(id list (1).opid-"PAP2NT), "SIrC.D3",
iD.%text,";\n"]) - iLdh ist(2].trn

f id - ist(lJ.action code - "states"
-> (-package Ds",IDAtext," in new STATE VARIABLE (s,

idhliatfhJ.tnams,*, ",id iat~lJ ..xp_ .nv(id hist(1J .count),
*)An)'idhlint(21.trn

id-liat(lJ.actlon code - "excp"
-> ("EX ,ID.%text,*,",id hist[2J .txnJ

id iat~l) .action code - latream"
->(package Ds",,ID.%text," is new "

(id list(l) .in *nv(ID.4text,"aurr TYPE") sw"fifo"
-> "rIFo BuFFER"
"SAMPEDDBumT"), (,dst].ae")\)
id_list[21.trn

idl1iathjljaction code - "timer"
-> ("TL",ID.%text,",",idhliat(2J .trn]

id-list(lj.action-code - "by-all"

* 251

l> id 13itjl) .opidt" SPZC.DS",IV.%heXt,".NEW -ATA"," ANID We,
id'liat(2) . trnj

f id-liat(lj.action code - "by_,seie"

-> li.d..liat(l) .opid, " SPEC.DS",ID.%text, ".NEW-DATh"," O~R \n",f
idl1iat(21 .trn)

id-littll.action-code -- "co output"
l> id l13h(l) .in -env(id l13t~lJ .opid'"PARZHT"),~"-SPEC.DS",

id l13t(2) .in env - id list(1J .in env;

id7list (2).action code- id listI).action-code;
id'list(2) .opid - id liat (1) .opid;
id list(2).tname - idlIit(lhtnat.;
id7list(2) .exp cPnv - Td listl(1).expe.nv;
id list(2).count -id-list(1 J.exp_ env(id list(1).count + 1) <>

-> id-listtl).counh + 1
f id-list(l.count;

id-Iistl1j.out env -

(id list(1] .action code - "byall"
-> (((XD.%text^"BurFTYPE") :"fifo")) +1 id-list(2) .out-env

idls~)acin'cd - "by some"
,-((ID.%text"BlUFF-TYPE") :"aapled")) +1 id-list(2] ~out env

f id-l~~l~cincd -- "input"
->(((ID.%text--TY7PE") :id list (lJ.tnane)

((XD.%text^"CONSTRUWC") :"data streamn")
((idl13t~l) .Opid"XHPARM") :E[D.%text,",",
idlist(2] .out env(id list(2) .opid-OINPA.HN) I)

+1 idl1ist(2J.out-env

idI~(Iacincd - "output"
->7(((ID.%text^"iUPE") :id l13t~lJ .tnamne)

((ID.%text^"CONSTRUCT-) : "data -stream-)

idflist(2J .out -env(id list(21 .opld'wOUTPARHw) 1)
1+1 id-list[2].outenv7

I id list(l].action code -- "stream"
->7(((ID.%text--TYPE") :id -list~l] .tname)

((ID.%text^"CONSTRUCT") :"data stream")) +1 id-list[2] .out any

id-list[l).action code -- "states"
-> (((ID.%text'"TYPE") :id-listl.tname)

((ID.%text'"CONSTRUCT") :"data stream")) +1 id-list(2] .out-env

252

f id litl.ato coe excp"

-> U (ID.%toxt"C~oNSTRUCT-) :"xception")) +1 id-listE23 .out-ony

id iiat(l).action code - "timer"
-> (((ID.%text:"CO0NSTRUCT") :"timerw)) +1 id 'iat(23 .out-env

id list (13.action code - "co output'
->7(((id liatl).opid, "_",ID.%text,"OUTPUT"J :"conditionalO))

+1 id list(21.out-env

((?:3tring:""))

id-list.ucond-output
((id liat(1J .in env(id list(13 .opid'" "1D.%textOUTrPUT")

<> "conditional") -&&
(id list(l).action code - "output")

->(id list(1J .in env(id list (11.opid-*PARENT"),"SAEC.D3",

id list(2J .ucond output;

IID
id-list.trn-

(id list.action code - "input" 11I
id _list, action _code - "output"

->(id -list.in-env(id list.opidPARIT")-
->("package DS0,ID.%text," in new ".
(id list.in env(ID.%tsxt'"BUFF_TYPE") -"fifo"

-> FIFO_BUFFER"
*"SAMLED -BUFFER")

,"(l,id -list.tnaine,");\n"j
("Package DS",ZO.%text," renames 0,

id -list.in-env(id_1ist~opid-"PARENT"),"-SPEC.DS",
ID.%text, ";n"])

id-list.action code - "states"
-> ("package DS",ID.%text," is new SAEVARIABLE(",
id -list .tnazne,", ",id list .expe nv(id-list.count),

f id-list.action code - "excp"
-> ("EX",ID.%textJ

id list.action code - "stream"
[* (package DS",ID.%text," is new 0,
(id list.in env(ID.%text^"auFF_TYPEw) - fifou

-> "FiFo B~UFFER"

I"SAMPLED BUFFER"), "(",id_list.tname,");\n"j

* 253

id liat.action codie -- "timer"
-5 ("TL"ID.%text)

f id list.act3.on code - "by all1"
-> (id liat.opid, ".PPC.DS", ID.%text, ".k1E1IDATA"J

id list.action code - "bysome"
-> rid list.opid1 " SPEC.DS" 1 10.%text, ".NEW DATA")

f id list.action code - "co output"
>(id-lit.inenv(idlit.opid'AREN4T"), "S.PC.DSO,ID.%text,

WRTE "");x,";\~

id list.out env
(id list.action code - "byll"

->(((XO.%text "BLIFFTyez") :"fifo"))

*id list.action code -m "by-som~e"
-> (((XD.%text"BUrrFTYPE") :"sampled"))

id li~t(l).action code - "input"
->7(((IT.%text^"TYPE") :id list4-11 .tnam.)

((XD.%text'"CONSTRUCT") :"data stream")

idla~lacinFcd - "ol~tputO
->7(((XD.%kteXt-"TYPE") :id list~ll .tnane)

((D.%text'"CONSTRUCT") data stream")
((id list.opid^"OUTPARH") :XD.%text))

id -listflj.action-code - "stream"
-> (((ID.%text'"TYPE") :id liatti) .tname)

((ID.%text^"CONSTRUCT") :"data stream"))

id -list(l).action -code - "states"
->(((XD.%ktext-"TYPZ") :id list [1].tname)

((ID.%text^"CONSTRUCT"):"data stream"))

id -list.action-code - "excp"
-> (((ID.%text'"CONSTRUCT") :"exception"))

f id list.action code -- "timer"
-> (((ID.%text"CONSTRUCT") :"timer"))

id list.action code - "co output"
-> (Uid-list.opid, WN" ZD.%text, "OUTPUT"] :"conditional"))

254

id I 1t .ucond output
(jid list, in any (id list.opid"I "ID. %teztOOU3T1UTO) <)Conditional")

&&(id list.action coda - "output")

-> id list.in *flv (id - iat.opid'OPApZNTa) ,0 SKC.D3SID.%t*Zt,

time
IkITEGER LITERAL unit
(tim.trn-

unit
NICROSEC

unit.value - 1;

INS
unit.value - 1000;

ISC unit.value - 1000000;

unit.value - 60000000;

IHOURS
unit.value - 3600000000;

reqta trace
iY id list
(rec;tstrace. trn 00

id list.in any - ((?:string:Ow));

id list.action code
id-list.tname
id:list.opid
id-list.count -1;

id-list. exp_env - it

* 255

functionality
keywords informal deac formal deac
functionality.trn

keyworda
K'.YWOPflS id list
(eywords.trn -";

id list.ine.nv I (?:3tring:""));
idliist.action code
id-lit.tnaie
id list.opid
id-list.count -1;
idlist.expenv - (?it:")

(keywozrds.trn- "

informal desc
DESCRIPTION TEXT

informal deac.trn "\n";)

(informal deac. trn";

formal deac
AXIOMiS TEXT
(formal dese.trn - \"

(formal desc.trn -

type impl
IMPLE14ENTATION4 ADA ID END
(type impl.trn -("procedure ",ID.%text," is;\n");

IIMPLEMENTATION type name op impi_0_list END
type impl.trn -("\n package DATAi TYPES is \n",typename.trn,"\n",

opiAmpIl0list .trn,"\n",

"end;\nw];

opiMpl_0_list
opi mplO_liat OPERATOR ID operator Impl

Iop_,impi_0q_list [I) trn -";
operator-impl.opid - ID.%text;

256

Iopimpl..0).iat(1I.trn

operator * mpl
IMPLEMENTATION ADA XD END
operator iwpl-trn - "

operatorimpllvgds-decl
operator-impl.timer deal
operator impl.out env - (((ID. text'"COiSTRUCT") : atoic-op~rator"));

IIMPLEMENTATION padl-impl
oper-tor-inpl.trn - psdlimpl.trn;

operator 'impl boc ds decl - psd imupi. loa-ds decl;
operator impl.timr dod - padl,_impi. timer deal;
psdl-impl.parent - operator~impl.opid;
psdl-impl. in env - operator _impi. in-env;
padi-impl.uncond-output map - operator impl.uncond output map;
operator impl.out env -

(((operator impl.opid WCONSTRUCTU) : cow~positc opcratorw)) +1
psdlimpl.out env;

padlimpi
data flow diagram streams timers control constraints informal deo MND

psdlimpl.trn - control aonstraints.tn;
psdl-impl.out-env - 3treams.out env +1 control-aonstraints.out.Onv;
psdl-ipl.loc-d3-deal a treams.trn;
psdl impl.timerjieal -timers.trn;
data flow diagram.in erw - psdl, impl.in-any;
3tream3.in -env - psdl,_impl.in-env;
control constraints .parent - psdliupl.parnt:
control constraints.in -env - psdl, impl.in-env;
control constraints, deal map -data flow diagram. decl map;

control constraints.unco~nd,_output map - psdl-impl.uncond output map;

data flow diagram
GRAPH link 0 list
data flow diagram.trn

data flow diagram.deal map - link 0_list.out decls;
link_0_lis3t.in deals - -((?:string:"")):
link7 01ist.in7-env m data-flow-diagram.in-*nv:

link_0_list
link link_0_list

link_0_list~lJ.trn

257

link -0 i3t (1).out decla - linkO).liat(21 .out-decla;
link O-itd2J .±n dec13 - link~out-dtCls;
link.in docla - link 0l13t 1) .in deCls;
link.in-env - link01ist(13 .intenv;
link -0 i~t(2.in-env - link O-list(lJ.in env;

Ilink 0Oliat.trn '"

link -liat .out dec13 - link-0liat.in-decl3;

link
XD ' ID opt-time ARROW ID

Ilink.trn - ";

link.out decI3

I((XDt3 .text'"READ") : link.in decls(ID(3) .%text""READ"),

+1

(link.in deCl3((ID(21.%tOxt,"_",XIDIl.%text])) "dup"

((10(2) .%text: (link.in decl3(ID(21 .%text),p

+1;\n")) ((I(2) Atext,'", ID(1I .%texbj :"dup"))

(link.in deC13((ID(3] .ttext,"_",IDII) .ttext)) - "dup"
-> ((?:string:""))
((10(31 .%text: (link.in decls(XD(3J .%text),

IDIIl.%text," : "link inenv(XD[1J.%text 'TXIE'),

)+1 link.in-decls;

opt-time
I., time

(opt-time.trn -

(opt time.trn - "Vi";

StreaMs
DATA-STREAM type dccl

3treaxns.trn - type decl.trn;
streams .out env - type decl.out-env;

258

type-decl.opid
type decl.action-code " stream";
type _decl.in env - streaMa.in wiv;

13treaM3.trn
3tr0Az.oUt-env - ((?:string:"f));

type name
ID ' type decl''

type name.trn - ID.tteXt,"(",typ d~cl.trn,"3\n"Jl;
typejdecl.opid - "
type decl.action code I tname";

IID
type_name.trn -ID.%text;)

timtV3?
TIMER id list

timerai.trn - (id-list.trn,* : PSDL TINZR;\nul;
id list. in env - (?srn:*)
id iist.action code -"timer";
id list.tname- "

idflist. opid
id l13t.count 1;
id list. expenv - (?int:""l

(timra.trn

control constraints
CONTROL
control constraints.trn H;

control constraints .out env -((?:string:""u));

ICONTROL OPERATOR ID opt tria optyper opt tinyw constraint-options
more constraints

(control -constraints.trn
(control constraints .in env (ID. %text "CONSTRUCT")

14composite operator"
->("procedure ",control c.onatraints. in env (wPARZNTw),"_",

ID.%text," is~n begin\n null;\n end "

control constraints, in env ("PARENT") ,"_", D. ttext, ';\n" I

("procedure ",control-constraints.in-env("PAMkIT"),

0 259

"ID.%text," is\n"ocontrol-contrainta.declmap(D.text),
"\nbegin\n", opt trig. streama check,
control constraints .decl map (XD. text'"READ"),
opt _trig, pred,
(control constraints .in-env(XD.%text""PROCCALL")-

- ID.%text#";\n")
X (D. %text, "(",
control constraints.in env(XD.txt^"PROCCALL") ,") ;\n"]

conatraint -options. tm1 ,\n",
control constraint3. uncond output map (ID. text)t
opt trig. end if-pined, opt _trig. end if streams,
"end ",control constra ints.in-env("AIRENT"),

",XD.%text,";\n"
more constraints.tmn;

opt_ trig, in -env - control constraints .in-env;
constraint option3. in Ienv - control cons3traints. in-.env;
constraint options. opid - ID * text;-
control constraints. out env

(((XD.%text^"PARENT") :control-constraints.parent))
+1I opt -trig. out env
+1 constraint options.out env
+1 more constraints.nut-env;

more -constraints, parent - control constraint . parent;
more-constraints.in-env - control constraints. in-env;
more-constraints.uncond-output map -

control constraints. uncond output map;
more constraints .decl map - control constraints .decl map;

(control constraints.trn
control constraints.out env - ((?:s',ring:""fl;

more constraints
OPERATOR ID opt -;trig optyper opt fin-w constraint options
more-const raints
(more-constraints(lI.trn

(more constraints, in -env (ID. %text'"CONSTRUCT")-
"composite operator"
->("procedure ",inore constraints [1] .in env ("PARENT") IMN

ID.%text," is\n begin\n null;\n end "

more constraints(1J .in env("PARENT") , ",IDAtext, ";n"J

("procedure ",more -constraints~lJ .in -env("PARENT"),
w w ,ID.%text," is\nl',more constraints [1].decl-map(ID.%ttext),

260

"Nnbegin\n~, opt-trig.atreams check,
more con~trainta.dec1map (XD.%text'PAD"),
opt trig. pred,
(more constraints(11 .in env(XD.%t.xt^01RQCCALLw) -U

-> (ID.%text,";\n"J
[ID.%text,"(",

more conatraints(l) .in env(ID.txt'"IROCCALLO) N) ;\nU)

constraint -options .trn, "\n",
more constraints(1J.uncond output map (MD.text),
opt_ trig, end if~yred, opt trig. end if streams,
"end ",more constraints(1J .ineonv(FIARZNT"),
",XD.%text,"A\n")

more constraints(2J.trn;

opt trig.in-env - more-conatraints.in_*rw;
cons3traint options.in Ienv -more constraints.ine*nv;
constraint options .opid - ID. %text;
more constraint3[li .out env -

T((ID.ttext-"PAREIT") :more constraints.parent)) +1
opttrig .out env +1I
constraint options.out env +1
more constraints (21 .outenv;

more-constrainta(21.in env -more constraints(l].in eny;
more constraints (23.uncond output map -

m;ore constraints (13.uncond output map;
more constraints(2].decl map - m~ore constraints[1j .decl map;

(more constraints.trn - ;
more -constraints.out-env - ((?:string:""));

constraint -options
OUTPUT id list IF predicate reqmts trace constraint-options
constraint -options(1J .trn -

constraint-options(2].trn) ;

constraint -options (2].opid - constraint options (1).opid;
constraint -options(2].in-env -constraint_options(11.in_*uv;
constraintopptions(1J.out-env -id list.out env +1

constraint options (2) .outeony:
predicate.in env - constraint optionstlJ.in env;
id -list.in enV constraint -options(1J.in-env;
id -is1t.action code - "co output";
id l13t.tname

* 261

idliat .opicl - eonftraint-OPtOns .opid;
idist.count -1;
id -iat.axpcnv - (:n:);

IEXCEPTION XD opt ifypredicate reqmta trACe Constraint options
constraint options(1) .trn -constraint options (21.trn;
constraint options (ii.out env - constraint options 12) .out env;
constraint options (2) .opid - constraint options 1) .opid;
constraint options (23 .in-env -constraint options (1).in-env;
opt ifypredicatc. in env - constrain oPptions (1) .in-env;

Itier-op ID opt ifypredicate reqmt3s race constraint options
constraint optionsti) .trn

(opt ifypredicate .if, tinier op. trn,",
constraint -options(lJ .inenv("PARZIIT"),"_PEzC.TJ.O, D.ttext,
");\n",optjif~prcdicate.endjif,constraint-options(2) .trn);

constraint opptions (1).out-env -constraint, options (2) .out-env;
conatraint-options (2).opid -constraint options (1).opid;
constraint options (2) .in env -constraint options (1).in-env;
opt,_if predicate. in env -constraint options 1) .in-env;

constraint options.trn
constraint options.out env -((?:string:""));

opt-trig
TRIGGERED trigger opt ifypredicate reqmt3 trace

Copt,_trig.out env - trigger.out-env;
opt,_trig. pred - opt iZfpredicate .if;
opt,_trig. end ifpred - opt ifypredicate . nd if;
opt trig.atr"amscheck -trigger.if;
opt,_trig.and if streams -trigger.end-if;
trigger.in-env - opt trig.in env;
opt if~yredicate.in-env - opt-trig.in env;

(opt,_trig.out env -((?:slring:""));
opt trig.pred
opt trig.end ifpred-
opt trig.3treams-check
opt,_trig.end-if-streams

trigger
ALL id-list

26Z

Itrigger.if - ("if ",id list.tzn,*\nthen\n~j;
trigger.end if - w'nd it;\nl;
trigger.outcenv -idliat .out env;
id ist.acton cde "by l"
id l13t.tn&MO a

idliat.opid tger.in..nv(mARZMT0)
idiliat.count 1;
idlist.exp_.env - (in 0;

Itr3.gger.if -("if "fid list.trn,Q\nthanni";
trigger.end if "end if;\n";
trigger.outen idlist .out-env;
id liat.action-cods - by ,ono;
idia~t.tnamt - ;
idlist.opid - trigger.in-env("PAAEKT");
ld l13t.count - 1;

id-liat. exp_.env - (7int:""l

(triggez:.it
trigger.end if -0

trigger.out-env -(:tin:")

optyper
:PERIOD time reqmta trace

optyper.trn - O\nU;

Ioptyper.trn - mu;

opt_fin w
FiNISH time reqits trace
opt-fin w.trn - -

optjfinyw.trn - ;

timer -op
READ

(timewr op.trn - OPSDL-TMER.READN;
IRESET

timer-op.trn - "PSDL TIHER.RESET";
ISTART

* 263

Ctimer -p.trl - "LPSDL TINER.START";

ISTOP
timer -op.trn - "ISDL- TIMER.STOP";

optjifpcedicate
IF predlicate
Iopt ifypradicate.if -("if ",predicato~trn,"\nthan\n");

opt if~precdicate.and if - "an~d if;\n";

prodicate.ineonv -optifpredIicae.imnyn;

(opt if predicate~if
opt ifyredicate.end if

expresaion).ist
*expression
JeXpte31on-list. trn - expression. trn;

eXpre331on-113t .exp env - ((6XPre331on-list.count :expression.trn)
(O:i2s (expression -list.count))
(?:int:""));)

Iexpression 1,' expression).ist
(expression list(l) .trn
lexpre33sin.trn, ", "1expression ' iat (21 .tinj;

eXpression..ist (1) eXp_!en V -

((expression I i,3tjli.count:eXPression.trn)) +1

expression -l1tj2j .expenv;

expression Iist(2) .count - expression list(I3.count + 1; 1

expression
INTEGERLITERAL
(eXpression.trn- INTEGERjLITERAL.ttext;3

IREAL-LITERAL
(expression.trn - REAL LITERAL.%text;

ISTRING-LITERAL
(expression.trn - STRING-LITERAL. text;

ITRUE
(expression.trn - " true "

IFALSE
(expression.trn - " false "

IID
(expression.trl - ID.%text;

Itype _name 1.' ID '(' expression list I
(expression.trn - (type _name.trn,ID.%text," (",expression.).ist.trn,

W) ");

expression list.counh - 1;

264

predicate
relation
(predicate~trri relation.trn;
predicate.type mrelation.type;

relation. in-env -predicate. in-env;

Irelation AND predi~cate
(predicatel[11.trn -(relation.trn," and ",predicate(2) .trn);
predicate~ll.type -"";

predicate [2) .in env - predicate(l3 .in-env;
relation.in-env - predicate[l] ,in-nv:

Irelation OR. predicate
(predicateti) .trn -(relation.trn," or ",predicatet2j .trn);
predicatetl).typt *";
predicate (2) .in -env - predicate (1].in -env;
relation.in env - predicate(l).in-enw;

relaionsimple -expression rel -op simple expression
(relation.trn - relop.trn;
simple expression(lJ .in env - x~latiori.in env;
simple expression[21 .in-env - relation.in"env;
relation.type -

(simple expresaionti] .type - "timer" 11
uiwpyle -expression(21.type - "timer"
-> "timer"
f simple expressionil1.type - Oexcp" 11

simple -cxpression(21 .type -"excp"
->"excp"

rel-op.left-op - simple expression~l] .trn;
rel-op.right-op - simple expression(2) .trn;
rel-op.parent - relation.inei(*AREHTO)!
rel-op.opn _type -

(simple expremiontl).type - "timer" 11
simple exp~ession(21 .type -"timer"
-> "timer op"
"arithm;etic"

* 265

3 imple expression
(ralation.trn a imple expreaaion.brn;
relation .type * imple expression.type;
nimple oxpreaaion.in env -relahion.in, env;

simple expro~ision
INTEGER LITERAL unit
(simple expzreaaion.trn 123 (a2i (INTEGER -LITERAL.Itext)

* unit.value);
simple expreaion.type -"tizner";

sign INTEGER LITERAL
(simple -expr;ssion.tzrn (sign.trn,INTEGER LITERAL.%text);
simple expression.type -

Isign REAL LITERAL
(simple -expression. tin -(3ign.hrn, REAL-LITERAL. %text);
simple expression.type - ;

IID
(simple expre33ion.trn -IoD.text;
simple expression, type -

(simple -expression.in env (ID~thext "CONSTRUCT") -- "timer"

f simple expression.in env (ID.txt^"CONSTRUCTw)

ISTRING-LITERAL
(simple expression.trn - STRING LITERAL. %text;
simple expression.type -

I IV' predicate I)'
(simnple expression.trn - ("(",predicate.trn,") "1;
simple expression. type - predicate .type;
predicate.in-env - simple expression. in-env;

INOT ID
(simple-exprassion.tnn - ("not ",ID.%text];
simple expression.type -

I NOT IV' predicate ')"

(simple expression.trn -([not (",predicate.trn,")"];
simple expression.type - ;
predicate.in-env - simple expression.in env;

ITRUE
(simple expression.trn -"true "

simple-expression.type

266

IFALSE
(simple expre3sion..trn - "false "

simple expresion.type

INOT TRUE
(simple expression.trn - t"not true";
siMple eXpre3sion.type

INOT FALSE
(3izpleexpression.trn - "not false
simple expression.type-

rel-op

(rel-op,trn
(re3._op.opn _type - "timer op"
-> ("PSDL TIMER.
(rel-op.left-op," < ",rel-op.rkghtoP]j

(rel-op.trn
(rel op.opr~type -"timer oPp"

(relcop.trn-
(rel op.opn-type - "timer op"
-> ("PSDL TIMER.
[relojp-leftocp," - ",reloPp.rightoPp]

IGTE
(rel-op.trn

(rel -op.opn ,.type - "timer op"
-> (-PSDLTIMER.

E reloplfo, j- zel op.rigiht op)

ILTE
(rel-op.trn

* 267

(rol op.opq type -- "timer op"
->(PSDL iMER.
*(Calop.left-op," <- ",rel-op.rJight-opj

I NEWV
(rel-op.trn

(rel op.opn-type us- "t3.ne~op" ,A

-> ESOL TIMER.
*(rel-op. left op," /u- ",rel-op.right-opJ

(rel-op.trn
(ral-op.right-op -- "N~ORMAL"
-> (rel-op.parent,"_ SPEC.DS",rel op.left op, ".IS HORM. "
(rel op.parent," -SPEC.DS",ral-op.left op,

".IS EXCEPTIOtN(,zelop.r.ght-op,") "

sign

(sign.trn -"+;

(sign.trn -"-;

(sign.trn - "'

268

APPENDIX N PSDL DATA TYPES

--

-- File: padl ystemt.&
-- Author: Frank Palazzo
-- Date: 15 Dec 89
-- Modified: 16 Dec 89 by Laura J. White

--

with vatrings, TIMERS;
package PSDL SYSTEM is

type Int list is array (l..10) of integer;

package PSDL STRINGS is new vstrings(50);

subtype PSDL E)%EPTION is PSDL-STRINGS.VSTRING;
type PSDLTIMER is new TIMERS.TIMER;

EXCEPTION 'ERROR,
BUFFER UWDERFLOW,
BUFFEROVERFLOW :exception;

generic
type ELEMENT TYPE is private;

package SAMPLED-STREAM is

task DATA STREAM is
pragma PRIORITY (10);
entry CHECK (NEW DATA :out BOOLEAN);
entry GET (VALUE : out ELEM1INT TYPE);

entry GET (VALUE : out PSDLSYSTEM.PSDL EXCEPTION4);

entry PUT (VALUE : in ELEMENTTYPE);
entry PUT (VALUE : in STRING);
entry IS-EXCEPTION (NAME :in PSDLSTRINGS.VSTRING;

CHECK :out BOOLEAN);
entry IS-NORMAL (CHECK : out BOOLEAN);

end DATA-STREAM;
end SAMPLED STREAM;

* 269

type ELFE.MNTTYPE is private;

package DATAFLOWSTREAM is

task DATA STREAM 13
pragma PRIORITY (10);
entry CHECK (NEW-DATA : out BOOLEAN);
entry GET (OUTVALUE : Out ELEMENT TYPE);
entry PUT (INVALUE : in ELEMEHT_TYPE);

end DATASTREAM;

function FRESH return BOOLEAN;
end DATAFLOWSTREAM;

generic
type ELEMENT-TYPE is private;

INITIALVALUE : ELEMENT-TYPE;

package SAMPLEDSTATEVAR 1s

task DATA STREAM 13
praina PRIORITY (10);
entry CHECK (NEW DATA : out BOOLEAN);
entry GET (OUTVALUE : out ELEMENT TYPE);

entry PUT (INVALUE : in ELEMENT TYPE);

end DATASTREAM;
function FRESH return BOOLEAN;

end SAMPLED-STATE VAR;

generic

type ELEMENT-TYPE is private;
INITIAL-VALUE : ELEMENT TYPE;

package DATAFLOW STATEVAR is

task DATA STREAM is
pragmrA PRIORITY (10);
entry CHECK (NEW-DATA : out BOOLEAN);
entry GET (OUTVALUE : out ELEMENT TYPE);
entry PUT (INVALUE : in ELEMENTTYPE);

end DATA STREPM;

Enction FRESH rtturn BOOLEAN;

end DKTAFLOW_STATEVAR;

end PSDLSYSTLM;

270

. package body PS'DL SYSTEM is
package body SAMPLED-STR'TAM is

package VSTRXNG renames PSDL -SYSTEM.PSDLSTIIIGS;

type DATASTREAMMODE is (NORMAL, EXCPTIOH);
type DATASTREAtTOKEN (MODE : DATASTREAM MODE -NORAL) in

recorc
XNITXALXZED,
NEW-DATA BOOLEAN :- false;

case MODE is
when NOPMAL ->

N_-VALUE : ELEMENT TYPE;

when EXCPTXON ->

E VALUE : PSDL SYSTEM.PSDL EXCEPTION;

end case;
end record;

task body DATA STREAM in

BUFFER :DATASTREAM TOKEN;
TempExcp :PSDL-SYSTEM.PSDLEXCEPTION;

begin
loop

select0 accept CHECK (NEW-DATA : out BOOLEAN) do
NEW DATA :- BUrFER.NEN DATA;

end CHECK;
or
accept GET (VALUE : out ELEMENT -TYPE) do

if not BUrFER.INITIALIZED then
raise PSDL-SYSTEM.BUFFER -UNDERrLOW;

elsif BUFFER.HODE - EXCPTIOH then
raise PSDL SYSTEM.EXCEPTIONERROR;

else

VALUE :- BUrrER.N VALUE;

BUrFER.NEW DATA :;: false;
end if;

end GET;
or

accept GET (VALUE :out PSDL SYSTEM. PSDL EXCEPTION) do

if not BUrrER.INITIALIZED then
raise PSDL SYSTEM.BUFFERUNDERFLOW;

elsif BuFFER.MODE - NOR-MAL then
raise PSDLSYSTEM.EXCEPTIONERROR;

else
VALUE :- BuFFER.E VALUE;
BUFFER.NEWDATA :;; false;

end if;

0 271

end GET;
accept PUT (VALUE : in ELEMENTTYPE) do

if (BUFFER.MODE - EXCPTION) and BUFFER.NzWDATA then
raise PSDL SYSTEM.EXCEPTION ERROR;

else
BUFFER :- (MODE -> NORMAL,

INITIALIZED -> true,
NEW DATA -> true,
NVALUE -> VALUE);

end if;
end PUT;

or
accept PUT (VALUE : in STRING) do
-- VSTRING.assign(VALUE,TempExcp);
BUFFER :- (MODE -> EXCPTION,

INITIALIZED -> true,
NEW DATA -> true,
E VALUE -> TempExcp);

end PUT;
or

accept ISEXCEPTION (NAME in PSDLSTRINGS.VSTRING;
CHECK out BOOLEAN) do

if BUFFER.MODE - EXCPTION then
CHECK :- VSTRING.equal(BUFFER.E VALUE , NAME) ;

else
CHECK :- false; 0

end if;
end ISEXCEPTION;

or
accept IS NORMAL (CHECK out BOOLEAN) do

CHECK :- BUFFER.MODE - NORMAL;
end ISNORMAL;

or
terminate;

end select;

end loop;
end DATA-STREAM;

end SAMPLED-STREAM:

package body DATAFLOW STREAM is

type DATA STREAM TOKEN is
record

INITIALIZED,
NEW DATA : BOOLEAN :- false;
VALUE : ELEMENTTYPE;

end record;

272

task body DATA-STREAM i

BUFFER : DATA STREAM TOKEN;

begin
loop
select

accept CHECK (NEW DATA i out DOOLEAN) do
NEW DATA :- BUrFER.NEW DATA;

and CHECK;

or
accept GET (OUTVA-LUE : omt KLEHZRT TYPS) do

if not (BUrrER.INITIALIZZD and BUrrZR.NKW DATA) then
raise PSDL SYSTEM. DUrFER-UNDRFLOW;

also
OUTVALUt :- BUrER.VALUE;
burrER.NZW DATA :- false;

and if;
end GET,*

or
accept PUT (INVALUE : in ELDMNET TYPE) do

if BUFFER.NEW DATA then
raise PSDL SYSTEM. nurriu OVERFLow;

else
BuFFER.VALUE :- INVALUE;
BUrFER.NEW DATA :- true;
BuFFER.ZNXTIALIZED :- true;

end if;
end PUT;

or
ter~minate;

end select;
end loop;

end DATA STREAM;

function FRESH return BOOLEAN is
RESULT :BOOLEAN#

begin
DATASTRZAM.CHECK(RESULT);
return (ESULT);

end FRESH;

end DATAFLOW STREAM;

273

package body SAMPLED STATE VAR is
th'pe DATA STREAMTOKEN is

reco d i
IlITIALIZED,
NEW DATA : BOOLEAN :- false;
VALUE : ELEMENT TYPE :- INITIAL VALUE;

end record;

tanik body DATA STREAM is

BUFFER : DATA STREAb TOXEN;

begin
loop

select
accept CHECK (NEW DATA : out BOOLEAN) do
NEW DATA :- BUFFER.NEW DATA;

end CHECK;

or
accept GET (OUTVALUE : out ELEMNTTYPE) do
if not BU'FER.XNITIALIZED then

raise PSDL SYSTEM.BUFFERUNDERMOW;
else

OUTVALUF, :- BUFFER.VALUE;
BUFFER.NEW DATA :- false;

end if;
end GET;

or
accept PUT (INVALUE : in ELEMENT TYPE) do
BUFFER.VALUE :- INVALUE;
BUFFER. INITIALIZED :-true;
BUFFER.MEW DATA :- true;

end PUT;

or
terminate;

end seloct;
end loop;

end DATASTREAM;

function FRESH return BOOLEAN is
RESULT : BOOLEAN;

begin
DATA STREAII.CHECK(RESULT);
return RESULT;

end FRESH;

end SAMPLEDSTATEVAR;

274

package body DATArLOW-STATE-VAR is

type DATA-STREAM TOKEN is
zrec-ard

IIVITIALIZED,
NWDATA BOOLEAN :- false;

VALUE : LEMENT TYPE :- XNITIAL VALUE;
end rec-. d;

task body DATA-STREAM is

BUFFER :DATA STREAM TOKEN;
begin

loop
select

accept CHECK (NEW-DATA : out BOOLEAN) do
NEW DATA :- BUFrER.kIEWDATA:

end CHECK;

accept GET (OUTVALUE : out ELEMTTYPE) do
if not (BUFFER.INITIALIZED and DuFFEP.AEwDATA) then

raise PSDL SYSTEM. BUFFER UNDERFLOW;
else

OUTVALUE :- BUFFER.VALUZ;
BUFFER.NEWDATA :- false;

end if;
end GET;

or
accept PUT (INVALUE : in ELEMNT TYPE) do

if BUFFER.NEW DATA then
raise 1'SDLSYSTEM4.BuFFEROVERFLow;

else
BUFFER.VALUE :- INVALUE;
BUFFER.NEN DATA :- true;
BUFFER.INITXALIZED :- true;

end if;
end PUT;

or
terminate;

end select;
end loop;

end DATASTREAM;

275

function FIQSJI return BOO0LEAN i3
RESULT : BOOLEAN;

begin
DATA -STRE1UH.CHECK(RESULT);
return (RESULT);

end FRESH;

end DATAFLOW STATE-VAR;

end PSDL-SYSTEM;

7.76

APPENDIX 0 KODIYAK SPECIFICATIONS FOR STATIC SCHEDULER

--

I file: pro s.k
author: laura Marlowe

I date: dec 88
modified: dec 89 by laura J. white

Idefinitions of lexical claoaes

%define Digit :[0-91
%define Xnt :(Digit)+
%define Letter :(a-zA-Z]
%define Alpha :((Letter)(Digit})
%define Blank :[\-
4define Char :1(}]
%detine Quote :["]

I definitions of white apace

:(Blank)+

I definitions of compound symbols and keywords

GTE :1>"

LTE
NEQV
ARROW
TYPE :typeITYPE
OPERATOR :operator(OPERATOR
SPECIFICATION :specificationISPECIFICATION
END :endIZND
GENERIC :generic GENERIC
INPUT :inputIINPUT
OUTPUT ioutput(OUTPUT
STATES :tettslSTATES
INITIALLY :initially INITIALLY
EXCEPTIONS :exceptionslEXCEPTIONS
MAX EXECTIME :maximum(]execution[]tiMeIMAXIMUMH)EXECUTION(]TIME
MAX RESPTIME :maximum[)response(ItimeIMAXIMUM[IRESPONSE()TIHE
MIN CALLPERIOD :minimum(]cal.'.ng[JperiodIMINIMUM(CALLING[]PERIOD
HICROSEC :microseo 1HCROSEC us

277

SEC
MIN :niinIHX11
HOURS ; houra I HOURS I hrs I HRS I hrtI HR
BY :by()requirementstBY()REQUIREMENTS
KEYWORDS :keywords IK&YWORDS
DESCRIPTION : dcscripton IDESCRIPTION
AXIOMS amxioms IAXIOMS
IMPLEM4ENTATION :implemientationlIIMPLEHEI4TATION
ADA :adaIAdajADA
GRAPH :graphjGRAPI
DATA-STREAM :data()3treamIDATftt)STREAM
TIMER :timerjIMER
CONTROL :conrtoll Ionstraints jCONTRQL () CONSTRArNTS
TRIGGERED :trlgqered ITR1GGERED
ALL ;by(la,11flYC)ALL
SOME ,byl !somti1BY()SOME
PERIOD :perid 1 RIOD
FINISH1 :finis~h(lwithiniIIISl()WITHIN
EXCEPTION :exceptionIEXCEPTXON
READ :read[Iini@IIREAD(]TIMIER
RESET :reset(7jt earRESET1)TIMER
START :start()timerjSTART(]TIMER
STOP :stopjt)timul-* I TOP()TIMER
IF :ifIIF
NOT :Nw"Jnnot"IuNcTrw
AND :&1adjAD
OR 4UIwimorWINOR')
TRUE :trueITRUE
FALSE : false IFALSE
XD :(Letter) (Alpha) A
STRXNG .LITZ"RAL :(Quote) (Char)*(Quote)
XNTEGER LITERAL :(Int)
RLEAL LITEPAL :(Int)"."(Int)
TEXT :((hrA1

I operator precedences
I '.left mnean~s group and evaluate from the left

%left .01k;
%left AND;
%left NOT;

%left 1:1;

278

.1 attribute declarations for nonterminal symbols

start I trn: string;)
padl (trn: string;);
component trn: string;);
data type (trn: string;);

operator I trn: atring;);
type spec (trn: string;);
type_dec_lIlist (trn: string;);
type decl (trn: string; 1;
opspec 0 list (trn: string;);
operator spec trn: atring;);
interface (trn: string;);
attribute (trn: string;);
time (trn: string;);
unit (value: int; 3;
id list (trn: string;);
reqmts trace I tin: string;);
functionality trn: string; 3;
keywords (trn: string;);
informal deac { trn: string; 3;
formal desc (trn: string; 3;
typ eimpl (trn: string;);
op impl.O_list (trn: string;);
operatorimpl I trn: string; children: string;);. psdI_impl (trn: string; children: string; 3;
data flow diagram I trn: string; 3;
link O list (trn: string; 3;
link (trn: string;);
opt_time I trn: string; 3;
streams (trn: string: 3;
typename (trn: string: 3;
timers (trn: string;);
control constraints (trn: string; children: string; 3;
constraint options trn: string; children: string;);
opt trig (trn: string: 3;
trigger (trn: string; 3;
optper (trn: string; 3;
opt fin-w (trn: string; 3;
timer-op (trn: string; 3;
optifpredicate (trn: string;);
predicate (trn: string;);
expression_list (trn: string;);
oxpression (trn: string; 3;
relation (trn: string;);
simple expression (trn: string; 3;
exception..expr (trn: string; 3;
rel op (trn: string; 3;
sign (trn: string; 3;

0 279

lattribtite declaraition3 for terminal symbols

10(%text: string; 1;
TEXT(%text: 3tring;)
STRING LITERAL(%text: string;)
INTEGiER LIT9PLAL(%text: string;)
REM. LITERAL(%text: string;)

1padi granmmar

start
psdl
%output(padl.trn);

pad.
psdl component
Ipadlil).trn - (psdil2J.trn,component.trn);

I psdl(l).trn -

component

data -type
(component.trn - data type.trn;

Ioperator
component..trn - operator.trn;

data -type
*TYPE ID type spec type imp].

data type.trn - [types3pec.trn,typeipl.trnj;

operator
*OPERATOR XD operator spec operator imp.
Ioperator.trn - ("LXHEAGE-,-\n-,iD7.text, "\n",

operator impl.childron, "END LINEAGE", \nw

ID.ttext, "\n",operator -spec.trn,
operator iAmpl.trnj;

type_Spec
SPECIFICATION typejdeci_-1 list op_.spec 0 list functionality END
Itype _spec.trn - op-spec_0_list.trn;

280

*tY7edeclllecl

Itype..decl1-ist~trn -typej.ecl.trn;

(type decl-l-ist~trn-

type decl3
id list 1 : type_.nam

type-decl.trn - id-lint.trn;
Iid list 1:1 type name 1,' type dec.

I ype decl.trn ;: lid-liat.trn,typedecl.trnj;

op spec 0 list
op_ spec_0_list OPERATOR ID operator-spec
op_spec-0list(lJ.trn - op smpec_.0_list (2) .t rn,IXD.%text , \n",

operator-opec.trn3;

op_speco0list.trn ;)

ope ratoar spec
SPECIFICATIOM interface functionality MUD

eoperator-opec.trn - interface.trn;

inter.
int:.&- attribute reqmts_trace
Iinterface(lJ .trn - (interface(2) .trn,attribute.trn);

(intertace.trn U;1

attribute
GENERIC type deci

(attribute.trn w N

IINPUT type deci
(attribute.trn - N

IOUTPUT type deci
(attribute.trit -

ISTATES type -deci INITIALLY expreusio~n-list
attribute .trn - [OSTATEO, \n type diecl.trn, UKMD3TATKU, O\n");)

IEXCEPTIONS id list
(attribute.trn - on;

MAX EXEC TIME time
Iattribute.trn - (6MT,\n,tine.trn,"\n*);

M IN CALL PERIOD time
Iattribute.t rn - (-MCP,N\nN,time.trn,w\n]j;

IMAXRESPTIME time

* 281

Iattribute.trn -"R""nietn"nj I

id list
X D I* id list
I id -iat(13)trn - (ID.%teXtj"\n*,id-list(2J.trn)
X D
id-list(l).trn - (ID.%teXt,"\n"J;

timie
*INTEGER LITERAL unit

timte .trn - 123(32i(XNTEGER-LXTERAL.%text)*unit.value);

unit
MXHCROSEC
(unit.value -1:

HNS
(unit.value -1000;

ISEC
(unit.value - 1000000;

I N
(unit.value - 60000000;

IHOURS
unit.value - 3600000000;

unit.value -1000;

reqnit3 trace
* BY i d list

retmts-trace. trn

zeqznts-trace.trn -W;

functionality
keywords info.-nal deac f~rral -dac

functionality.trn -"14;

keywords
*KEYWORDS id list
(keyword3.trn -"\;

(keyword3.trn - ;

282

informal de~c
DESCRIPTIOH TEXT

informal deac.tri -~"

(informal-cteac.trn

formal deso
ZXW~4 TEXT

formal desC.trn - \nU;

formal deac.trn -

type -imp1

IZPLEMENTATXON ADA XD END
(type impl.trn - (ID.%text,*\n'j;

IMP!LEMENTATION type name op izmpl 0 list END
Itype iinpl.trn - op-impl_0_list.trn;

op ip 1 -0 list
op_implO _list OPEPLATOR ID op~rat~ozr.mpl

I opmpl~ist~] .tn - op ipljist(2] .tzn,XD.tx,\"

Cop-impl_0_ist(lj.trn - (o~"; l._)tx,\"

operator impl
XHPLENITATIOH ADA XD E14D

operator _impl.trn - (ID.%text,"\n");
operator~impl.children - (OATO4C#\nwj;

IMIPLEMHENTATION psdlizmp~l
operator _impl.trn - psdIimp '.trn;

operator impl.children - psdliml.childron;)

padl-impl
data-flow diagraM streams timers control-constraints informal deac END

psdlinpl.trn - [data -flow -diagram.trn, control contraints.trn);
psdlinpl.children ~-control constraints.childron;)

data-flow diagram
GRAPH linkolist

data flowjdiagram.trn -link 0 l.Lst.trn;)

link 0 list
link 0list link
(linkO-liattlJ.trn t link:-0liatr2I .trn,link.trn);

(link-0list.trn

link
*ID f.f ID opt-time ARROW XD

link.trn - ("LINK","\n",XD(l3.ttext,"\n"tXDE2J.tOtxt"\l"I
optitme.trn, "\n",ID(3J .%text,"\n");

opt-time
* :, time

opt,_time.trn -time.trn;

opt tinie.trn - "OW;

streams
*DATA STREAM type deci

streams.trl 71NW;

(3treams.trn ";

type name
*ID 'E' type decl'3

(type name.trn "

IID
type nazne.trn -"

timers
*TIMER id list

timers.trn -N

(timers.trn-NW

control constraints
CONTROL

control constraints.trn-N"
control constraints.children ";

ICONTROL OPERATOR XD opt -trig cptper opt,_fin-w constraint-options
(control constraints.trn - fIL..%text, "\n"optypertrnoptfinw.trn,

constraint options. trn);

control constraints.children - ID.%text, "\n",
constraint oPptions.children];

284

1control conatraints.trn
control conatraints.children

constraint -options
OUTPUT id liut IF predicate reamts trace constraint-options
constraint options (1).trn - conStraint options [2) .tvn;
constraint options .children -constraint option. [2).childron;)

X XCEPTXON ID opt itprodicate reqata trace constraint options
constraint options (1).trn - constraint opticns (2) .trn;
constraint options.children - constraint _options(2) .childr~n;)

Itimer op XD opt ifypredicate reqats trace constraint,_options
constraint-options (1).trn -constraint options (2) .trn;
constraint options.childran -constraint options (2) .childreni)

OPERATOR XD opt trig optyper opt iin - constraint -options
(constraint option3(l) .trn - (ID.%text,"*\n*,optper.trn#

opt,_fin w.trn, constraint _options(2) .trn);
constraint options.hildren - (ID.Itext, *\n",

constraint options (2) .childrenl)

(constraint options.trn - ;
constraint-options.children

opt-trig
%TRIGGERED trigger opt,_ifpxedicate reqpmts trace

opt-trig.trn

(opt,_trig.trn -

trigger
ALL id list
(trigger.trn - ;

ISOME id list
Itrigger.trn -W

(trigger.trn- "I

optyoer
:PERIOD time reqmuts trace

opt-yer.trn - EUERIOD"\n,tjetrn,"\nU);

Joptyper.trn - :

opt,_fin -w
FINISH time reqmts trace
opt_fin w.trn - j"WITHIN,\n",time.trn,*\n"):

* 285

Copt-finw. trn ";)

tinmor op
*READ

(tierop.trn N

IRESET
timer-op.trn - 0";

ISTART
(timer op.trn - "

ISTOP
Ctimer op.trn - ;

opt,_ifypredicate
zir predicate

Copt,_ifypredicate.trn

(opt ifypredicat.trn-N;

expre a aion i.,t
e xpves3ion
(expression list.trn
1 expreassion 1,1 expression -list

(expression list~lJ .trn N;

expression
INTEGER LITERAL
(expre33ion.trn - ;

REAL-LITERAL
(exprcesrion.trn -U;

ISTRING-LITERA~L
(expression.trn -UN

ITRUE
(expresaion.tzn - ;

(eXpression.trn - N

IID
lexpression.trn -NO;

Itype _name '.' ID ('expression list')
(expresion.-urn m "

. predicate
relation
(predicate~trn WW

Irelation AN~D predicate
(predicatelIjtrn - 00;)

Irelation OR predicate
(predicate(1j~trn un

rel;%tion
simple expression z*elop simple-expression
(relation.trn - 0;)

Isimple expression
(relation.trn 00;3

simple-expression
sign IKTZGER LITERAL unit
(simple expression.trn -

Isign REaL -LXTERAL
(Simple "xpression.trn - :
XD
(simple expremsion.trn -
STRXNG LITERAL
(simple expression.tr - 00;

I'(' predicate I)'
(simple -expression.trn - 0;

INOT ID
(simple -expression.trn
N OT I(* predicate f)'
(simple expression.trn -;

ITRUE
(simple -expression.trn - ~

IFALSE
(simple expresuion.trn - un

W)HT TRUE
(simple expression.trn - fU

N OT FALSE.
(simple expression.trn - ;)

rel-op

(rel op.trn - U3

I '>,

(rel op.trn -";

(rel -op.trn - ;3

I GTE
(rel_op.trn - ;

* 287

LTC1.
(rel op.tr1n '4NW

I :'EQ

(3ign cn -"

I39 ' n '

(319n.t1n '

288

APPENDIX P STATIC SCHEDULER DRIVER

-- file: driver.a
-author: mucat kilic
-- date: nov 89
-- modified: 26 dec 89 by laura J. whit*

with TEXT_10;
with FILES; use FILES;

with FILE PROCESSOR;

with EXCEPTION HANDLER;
with TOFOLOGXCAL-SORTER;
with (ARMOIC BLOCK BUILDER;
with OPERATOR SCHEDULER;

procedure STATIC SCHEDULER is

*THEGRAPH : DIGRAPH.GRAPH;
PRECEDENCE LIST : DIGRAPH.VLISTS.LXST;
SCM INPUTS7 SCHEDULE iNPUTS LIST. LIST;
AGENmDA : SCHEDULEiNImuTs7LX3T.LXST;
BASE BLOCK : INTEGER;
HILENZGTH : INTEGER;
STOP TIME : INTEGER :- 0;

begin
FILEPROCESSOR.SEPARATEDATA (THtE GRAPH);

TILE PROCESSOR.VALIDAkTEDATA(TNE GRAPH):

TOPOLOGICAL SORTER. TOPOLOGIXCAL SORT (THE GRAPH, PRECZDWC3 LIST);

HANO4IC BLOCKBUILDER. CALC PERIODICEQUIVALENTS (PRECEDENCE LIST):
HARWHIIC_-BLOCK BUIWEXR.FINDBSEB LOCK (PRECEDENCE LIST, 5A"1_BLOCK);
HARMONIC -BLOCK BUILDER. FIND BLOCK LENGTH (PRECKDENCkg LIST, M iLENGTH);
OPERATOR SCMEDULZR.TEST D'AA(PREZCEDENC LIST, H-BLzNGTM);
loop

if NOT(TESTVERIFIED) then
TEXT IO.PUT("Although a schedule may be possible, there is no I);
TEXTIO.PUTLINE(guarantee that it will execute);
TEXT IO.PUT LINE(Owithin the required timng constraints.");
TEXT -IO.NEN LINE;

end if;
begin

OPERATORSCHEDULER. SCHEDULE INITIAL SET
(PRECEDENCE LIST, SCHINPUTS, H_ILNTH, STOP TI)6);

299

QOETCHSEDULER. SCHEDULE REST Or BLOCK
(PRECEDEHCE-LIST, SE11INPUTSt HELNTH, STOP TIME);

OMERTORSCEDULZR. CREATE STATIC-SCHEDULE

(TIEGRIItCHINPUTS, 1LNGMMH);

TEXT - O.PUT(9. feasible schedule found, ");
TExI&Ixo.PUT LXtE(Nthe Harmonic Block with Precedence)
T9XT7 1Q.rUT iINZ(' Constraints Scheduling Algorithm Used. 0);
SCII INPUTS :.- null;
exit;

exception
wh4n OPERATOR SCREDULER. MSED UEADLINE -

null;
when OPERATOR SCHEDULER.OVER TIME

null;
end;

begin
HArPHONIC BLOCK BUILDER. CALC PEIRIODIC EQUIVALENTS

(THE GP.APH. VERTICES) ;
OPERATOR-SCHEDULER. SCHEDULE WITH EARLIEST -START

(THE GRAPH, AGENDA, ISBENGTH);

OPERATOR-SCHEDULE.R. cREATE STAi C SCHEDULE
(THE GRAPH, AGENDA,H HBENGTH);

TEXT -IO.PUT LIHXE("A feaaible schedule foundt the Earliest Start");
TEXT I O.PUT LINE(-Scheduling Algorithm Used.U)
AGENDA :- null;
exit;

exception
when OPER.ATOR SCHEDULZR.MISSED DEADLINE ->

null;
when OPERATOR-SCHEDULER.OVER TIME -

null;
and:

begin
OPERATOR SCHEDULER. SCHEDULE WITH EARLIEST DEADL'&NR

(THE GRAPH, AGENDA, H-BLENGTH);
OPERATOR SCHEDULER. CREATE STATIC SCHEDULE

(THE -GRAPH, AGENDA,fHBLENGTH);
TEXT -IO.PUTINE(-A feasible schedule found, the Carlieat U):

TEXT -O.PUT LXNE.(-Deadline Scheduling Algorithm Used.)
AGENDA :- null;
exit;

exception
when OPERATOR SCHEDULER.MISSEDDEADLINE ->

null;

when OPERATOR-SCHEDULER.OVER-TIME -
null;

vhen OPERATOR SCHEDULER. MISSED OPERATOR -
null;

end;

end loop;

exception
when FILE-PPSJCESSOR. CRIT OP LACKS MT

EXCEPTIOI HANDLER .CKITOL KZT(xcepdorOprator);

when FILE PR0CESOI.HETNOTLESS THAN P13100 ">
EXCEPTIONIKANDLER.HETJILTJERIOO (Exception% Operator);

whert rILE-PROCZ3SOR. IZT NOT LESS THAN 4RT ->
EXCEPTION HADLER.MZTjM-L-T4RT (Exception OPera~tor):

when FILE PR0CESSOR.NCPjQOTjLESS.THAN WRT ->
EXCEPTION HANDLER. 4CP N-LT HAT (ExceptionOperator);

when rILE PROCESSOR.MCP LESSTHUAN_)T ->
EXCEPTION HANDLER.HCP7L-T)T (ExcptionkOprator);

when FIE PROCESSOR.NET IS GREATER THAN rINIS WITHIN ->

EXCEPTION HANDLER .MTIGZTFINISH WIlTIXN (Exception _Operator) :

,then FILE PROCESSOR.SPOPADIC OF LACKS NCP am>
EXCEPTION HANDLER.SPOADICQLJC M(EZxceptionOperator) ;

when FILE PROCESSOR.3PORADXC 0? LACKS M.T ->

EXCEPTION HANDLER.SPOP.ADIC_0_LHRT(Exception_ Operator);

when SCHEDULE-INPUTSLIST.BADVALUE ->
EXCEPTION HANDLER.SILSADVALUE;

when DIGRAPH.V LIST3.MA VALUE ->
EXCEPTION HANDLER .VL BAD VALUE;

when DIGIRAPH.E LISTS.BAD VALUE ->

EXCEPTION HANDLER.EILIA M VALUE;

when HAPHONIC BLOCKBUILDER. NO BASE BLOCK -

EXCEPTION HANDLER .NO-BBLOCK;

when HARMONMIC BLOCKBUILDER.NO OPERKATORINLIST -

EXCEPTION HANDLER.NOOPINLIST;

when HARMONIC BLOCKBUILDER.METNOTLESSTHAN PERIOD ->

EXCEPTION HANDLER.METNLTPERIOD (Exception _Operator):

end STATIC SCHEDULER;

291

APPENDIX Q STATIC SCHEDUER ERROR HANDLER

-file: a handler a.&
-- author: rnurat kdl-Ic
-date: nov 89
-modified: dec 09 rnurat kilic

ith FILES; uae FILES;

package EXCEPTION HANDLER is

procedure MRT0--ET(Exception Operator : in OPERATOR-XD);

procedure MET-N-LTPEROD(txception Operator : in OPEP.ATOR-ID);*

procedure MET H L T HRT(Exception Operator : in OPERATOR-ID);

procedure MCPNLTMRT(ExceptionOperator : in OPERATOR-ID);

procedure MCP-LT MET(Exception-Operator : in OPERATOR ID);

procedure METI-G-T FINISH WITHIN (Exception Operator :in OPEPATORk.ID);

procedure PERIOD L-TFINISH WITHIN(ExceptionOperator :in OPEPATOR-ID);

procedure SPORADXC 0_LMCP(Exception Operator : in OPERATORID);

procedure SPORADICO0LMRT(Exception _Operator : in OPERATOR-ID);

procedure SIXL-BAD VALUE;

procedure V L DAD VALUE;

procedure E L BAD VALUE;

procedure NO-B BLOCK;

procedure NO OP IN-LIST;

end EXCEPTION-HANDLER;

292

APPENDIX R STATIC SCHEDULER ERROR HANDLER

-file: aehandlerb~a

-author: urat kilic
-date: nov 89
-modified: dea 89 by murat)dilic

with TEXT 10;
with TILES; use FILES;

package body EXCEPTION HANDLER is

procedure CRXT 0L MT(xception _Operator :in OF&P.ATOR ID) is
begin
TEXT 10. PUT (-Critical Operator 0);
VMRTRING.PUT (ExceptionOperator);
TEXT IO.PUT LINT (" must have an MET");

end CRI1TO0LMEZT;

procedure b4TNHL-TERIO(Exception ,.Operator : in OPERATOR-ID) is
begin
TEXTIO.PUT ("MET is greater than PERXOD in operator)
vARsTimG.PUT LINE (Exception Oprator);

end MTNL-TPtIOO;

procedure METNLT MRT(Zxception ..perator : in OPERATOR-ID) is
begin
TEXT_IO.PUT ("MET is greater than IRT in operator)
VARSTRING.PUT LINE (ExceptionOperator);

end METNHL-T kT;

procedure MCPNLTMRT(xception _Operator : in OFPATOR ID) is
begin

TEXT IO.PUT ("MCP is greater than MAT in operator 0);
VARS7TRING.PUT -LINE (Exception% Operator);

end MCP__LTMRT;

procedure MCP-LT-MET(Exception _Operator : in OPERATOR ID) is
begin
TEXT -IO.PUT ("NCP is lessn than MET in operator 0);
VARSTRING.PUT LINE (Exception _Operator);

end MCPLT MET;

293

procedure MET I G T FIZIISHIWITHIN

begin (Exception Operator : in OPERATOR ID) is

TEXT IO.PUT (-MET is greater than rXNISH WITHIN in operator)
VARSTRXNG.PUT LINE (Exception Operator);-

end METIGT-iNSHWITHlI;

procedure PERIOD L-TJXNISH WITHIN
(Exception-Operator : in OEEATOR ID) is

begin
TEXT I0.PUT ("Period 13 less than FINISH WITHIN in operator 4);
VABSTRXNG. PUT LINE (ExceptionOperator);-

end PERIOD-LTINIHWITIIN;

procedure SPORADCO0L HCP (Exception Operator : in OPERATOR ID) Is
begin
TEXT -IO.PUT ("Sporadic Operator 0);
VARSTRING.PUT (Exception-Operator);
TEXT IO.PUT LINE (" miust have an HCP");

end SPORADICQULHCP;

procedure SPORADCO0L MRT(ExceptionOperator in OPERATOR ID) is
begin
TEXT IO.PUT ("Sporadic Operator)
VARSTRING.PUT (Exception Operator);
TEXT IO.PUT LINE (" M~ust have an HP.?");

end SPORADIC_0_LMRT;

procedure SI -L BAD VALUE is
begin
TEXT - 0.PUT ("You try to get a schedule input where your pointer ;

TEXT IO.PUT LINE (-is pointing a null record.");
end SYL_BAD _VALUE;

procedure V-LDAD VALUE is
begin
TEXT -IO.PUT ("You try to get an operator where yovir pointer")
TEXTiO.PUT'_ LINE ("is pointing a null record.");

end V Z BAD VALUE.;

procedure E-LBAD VALUE is
begin
TEXTI O.PUT ("You try to get a link data where your pointer")
TEXT IO.PUT'_ LINE (-is pointing a null record.");

end E-1; BAD VALUE;

procedure NO-B BLOCK is
begin

TEXT_-IO.PUTLINE ("There is no BASE BLOCK in this systeM.");
end NOBBLOCK;

294

* procedure 80OOP-ILXST is
begin
TFEXTIO.PUT LINZ ("There is no CRITICAL OtZPATO. In this system

and NO OP IN LIST;

end EXCEPTIONHANDLER;

295

APPENDIX S STATIC SCHEDULER GLOBALS

-file: M03e.4

-- author: murat kilic
date: Oct 89
m- odified: doe 89 by laura J. white

with VSTRINGS;
with SEQUEnCES:
with GRAPHS;

package FILES is

package VARSTRING is new VSTKXNGSiSO);
Use VARSTRIIIG;

subtype OPERATOR -ID is VSTKItIG;
subtype VALUE is NATURAL;
subtype MET is VALUE;
subtype MRT iLa VALUE;
subtype MCP ts, VALUE;
subtype PERIOD is VALUE;
subtype WITHIN is VALUE;
subtype STARTS is VALUE:
subtype STOPS is VALUE:
subtype LOWERS is VALUE;
subtype UPPERS is VALUE;

Exception-Operator : OPERJTOR-ID;

TEST VERIFIED :BOOLEAN :- TRUE;

type OPERATOR is
record
THE OPERATORID :OPERATOR -ID:
THE7"MET :MET :.- 03;
THE HRT MRT :-0;
THE7 MCP MCP :-0;
THE PERIOD PERIOD :-0;
THE7WITHIN :WITHIN :-0;

end record;

package DIGRAPH is new~~ GRAPHS (OPERATOR);

2%6

type CEDUIEJNPUTS i

THE OPERATOR :OEAO D
THE-START : STARTS :-0;
THESTOP :STOPS :-0;

THE-LOWP. : LOWERS ;-0;
THE UPPER : UPPERS : 0;

end record;

package SCHEDULEINPUTSL13T is now SEQUENCES (3CHEDULE INPUT3);

type OP I~ro is
record
MODE : OPERATOR;
SUCCESSOKS : DIGRAPH.V-LISTS.LIST;
PREDXCE33OR3 : DIGRAPH .V LISTS *LIST;

end record;

package OPINFOLIST is now 3EQUENCES(O1PJlNFO);

end FILES;

* Z2v

APPENDIX T STATIC SCHEDULER FILE PROCESSOR

-- file: fpo3. a

-- authors: laura marlowe
-- Murat kilic

-- date: nov 89

with FILES; use rILES;

package FILE PROCESSOR is

procedure SEPARATE DATA (THE GRAPH : in out DIGRAPH.GAPH);

procedure VALIDATEDATA (THEGRAPH : in out DIGRAH.GRAPH);

CRXT OP LACKS MET : exception;
MET HOTL LESS THAN_ PERIOD : exception;
METNOTLESS THANMRT : exception;
HCP. NOTLESS THANMRT : exception;
MCP LESS THAN MET : exception;
METIS GREATER THAN FINISH WITHIN : exception;
SPORADIC OP LACKS MCP : exception;
SPORADIC OP LACKS mRT : exception;
PERIOD LESSTHAN FIN XS HWITHIN : exception;

end FILE PROCESSOR;

298

APPENDIX U STATIC SCHEDULER FILE PROCESSOR

-file: fp.a.
-author: lauxa Marlowe

-- Maurat kilic
-- date: Oct 89
-modified: dec 89 by laura 3. white

with TEXT 10;
with FILES; use FILES;

package body FILE PROCESSOR is

procedure SEPARhTE DATA (THE GRAPH : in out DXGRAZ'.GRAPH) is

-- This procedure reads the output file which has the link
-information with the Atomic operators and depending upon
-the keywords that are declared as constants separates the
-information in the file and stores it in the graph data
-structure, where GRAPH has the operator and link information
-- in it.

package VALUEI10 is new TtXTjIO.IKTEGER-IO(VALUZ);

MET : constant VARSTRING.V3TRING :-VARSTRING.VSTR(IMTO);
HAT : constant VARSTRIWG.V3TRING :-VAR3TRIHG.VSTR("NRT");
MCP : constant VAASTRING.V3TRING :VAASTRING.VSTR(bgC?');
PERIOD : constant VAR3TRING.VSTRING :-VAP.TRING.VSTR("93RIO0");
WITHIN : constant VARSTRING.V3TRING :-VAP.TING.VTR(WITHNH)l
LINK : constant VARSTRING.VSTRING z- VAMTRI3IG.VSTR(OLINKO);
ATOMIC :constant VARSTRING.VSTRING :-VAR3TRING.VSTR(OATOMIC");
EMPTY : constant VAP.STKING.VSTRING :-VAASTRING.VSTR(aEMITY*);

CurrentValue : VALUE;
Now stream :DIGRAPN.DATA STREAM;:
New "Word : VARSTRING.VSTRIHG;
Cur Opt :OPERATOR;
CurLink : DXGRAPH.LXNR DATA;

NON CRITS : TEXTI0.FILE TYPE;
AGOUTFILE : TEXT IQ.rILE7TYPE;
INPUT :TEXT Io.rILEMODE : TEXT_10.1K FILE;
OUTPUT : TEXTIO.FILE MODE :TEXT IO.oUT FILE;

*2

PRINTEDOES : DIG0 ll.C 161STS.LIST;
31, S2, LI :DIGRAPII.VLLGITS.LXST;*
!Dl, 1D2 : OP'ERATOR;
STAR~T 11OD& : OQ9RALTOV'.

procadure IHITXALIZE OPERATOR (OP' in out OPERATOR) is

Q?.THZ-M&T :"01
OP.THE-MRT :0;

OP.TIIS-EJI D~ 0i

and;

begin
TEXT " O.O'EN (AG OUTFILE, INPUTt "/ni/sun#2/work/ceps/prototypeostgonic.info");
TEXT o.CREATE (NON ClUTS, CUTVUT, /n/aunu2/wor/cp/prottype/noncrits'1;
VARS -RING.GET LINE7(AG OUTFILE, Now Word);
while not T&XT xo.Nr." rrL(AGO-UTrXLZ) loop

if VARSTp.ING.ZQUAL (New WordtLINK) then
START N0ooE.THZ 0PERATUR ID :- EMPTY;
Eli rODE.TIC OPERATOR X3 :. EMPTY:
D16GPAH.V STKING.GET LNE(AG oUTrXLE,New Stream~);
Cur Link.7HE DATA siinAm :u. iiew-stream;
VAiSTRING.GiT LIN-Z(AG0UTrXLE# New Word):
Li :- TIIE GRAFII.VZRTXCZS;0
while DIGPAPII.V-LZSTS. NON EZWPTY(Ll) loop
if VARSTRING. EQJAL (DIGRAPH.V LISTS.VALUE (LI) .TME QIEATOR ID, New-Word)

then
START -NODE :- DIGRAPH.V-LISTS.VALUE (Li);
exit;-

end if;
DIGRAPH.V-LISTS .HZXT (L);

and loop;
VALUE IO.G9T(AG OUTFILtt Cunrent-Volue);
TEXT I0.SKIP LINE (AG OUTrILE);
Cur Lnk.THE7LINK miiT :- Current Value;
VAiSTRIHG.GiF LINEr (AG OUTrILE, N ew Word);
Li :-- THE GAPH.VERT1CEZS;
v.hile DIGKAPH.V LISTS.NON EMPTY (Li) loop

if VARSTRING.EQUAL (DXGP.APH.V LXSTS.VALUE (Li) .THE OPERATOR ID, New Word)
then

END N~ODE :- DIGRAPH.V LISTS.VALUZ(LI);
exit;

end if;
DIGRAPH.VLISTS.NEXT(LI);

end loop;

-- when eitker atarting node or ending node of a link is

300

-EXTERNAL, the link information will not be added to the
-graph. Assuming that all external data coming in Is ready
-- at atart tim~e.

'f VAIRSTRING. NOTEQUAL (STAIKT #00K .THK OPrKATOR ID, KauY) and
VARSTRING.NOTKQUAL (END NOOK.TMK OPERFATOR ID'WTT) then

DIGPAPH .V LISTS .ADD (START-HOOK, Cur Link.TH% TIM? 01 ID);
OIGRAPH.V-L1STS.ADD (END-KOOK, Cur Link.TIR SECOND OF-ID);
DXGP.APH.ADD (Cur Link, THE-GRAPH);

end if;
VARSTRING.GET LINE (AGO0UTrILK, Hew-Word);

elsif VARSTRING.EQUAL (NowWord,ATONIC) then
VAKSTRXNG.GET LINEC AGOUTFILE, Now-Word);
Cur Opt .THE .OPERATOR XD :- Now Word;
VARSTAING.GET LINE (AG-OUTTILE, Now-Word);
if (VARSTRXNG.EQUAL(Kew Word, ATOMIC)) or

(VARSTKXNG.EQUAL(Now Word, LINK)) nr
(TFX O.KHDor _FILK(AG OUTFILZ)) then
VAR3TRING.FUiTLINK(POi CRXTS, Cur O pt.TRE OPERATOR ID);

also
while VARSTRXNG.NOTEQUAL (Now-Word, ATOMIC) and

VARSTRING.NOTSQUAL (New Word, LINK) and
not TEXT IO.KHDOF TILE (AG OUTrILZ) loop

if VARSTAING.EQUAL (Hew-Word,HKT) then
VALUE X0 *GET (AG OUT! ILK, Cu rre nt Value) ;
TEXT IO0.SKIPLIWZ(AG OUTFILK);
Cur _Opt.THE MET :- Current Value;

elsit VARSTRING.EQUAL (Hew-Word,MAT) then
VALUE 10 *GET (AG OUTFILK, Current Value) ;
TEXT I0.SKIP LINE(AG OU TFILK);
Cur Opt.THE IRT:- CurrentValue;

elaif VARSTRING.EQUAL (New-Word,MCF) then
VALUE IO.GET(AG ot*TFILZ,Current Value);
TEXT IO.SKIP_-LIHt(P'.GOUTfILZ);

Cur Opt.THE MCP :- Current-Value;

el31f VARSTRIKG.EQUAL (Hew-Word,?KRIOO) then
VALUE X0.GET(AG OUTrILZ,Current Valuae);
TEXT -ib.SKIF LIKE (AG ovTrILK);
Cur O9pt .TME-PERIOD :- Current-Value;

tlaif VARSTRING.EQUAL (New Word,WITHIK) then
VALUE IO.GET (AG OUT ILK, Current Value);
TEXTIO.SKIPLliE(AG OUTYILE);
Cur _Opt.THEWITHIN :~Current-Value;

end if;

* 301

VARSTRXNG.GET-Lt1E (AG QUTrILE, Nsw-Woait);
end loop;

DXGRAPI. ADD (CUCrpt. TiltGI'It);
XIXTAIZOPEATOR(CUr OPt);

and if;
end. if,-

and loop:
and SEPARATC DATA;

procedure VALXDATZ DATA (Tilt-GRAPH : in out DXGRAPH.GP.AH) is

TARGET : DZGRPAH.V -LXSTS.L1ST;
package VAL-10 is new TEXT 1XITEGZR XOtVALJE!;

begin
TARGET :- THE -GRH.VERTCES;
while DXGRAPH * V LXSTS .NON E*WTX (TARGET) loop

-- ensure that there is no operator without an NET.
if DIGRAPJI.V-LXSTS.VALUE.(TARGET) .THE MET - 0 then
txception _Operator :- DXGRALH.V LISTS.VALUE (TAR'.,ET) .TmE OlPEATOR ID;
raise CRIT OP LACKS MET:,

and If;

If DXGRAPH.V LISTS.VALUZ(TARGtT) .THE PERIOD - 0 then
-- Check to ensure that MCP has a value for sporadic operators
if DIGPAPII.V LXSTS.VALUE(TARGET).THE MCP -0 then

ExceptionOperator :- DIGRAPH.V LXSTS.VALUE (TARGET) .THE O'EATORID;
raise SPORADIC OP LACKS HCP;

alsif DIGRAPII.v LxSTs.vAL~uE(TARGET) .THE HET>
DIGRAPK.V LISTS.VALUE (TARGET) .THE MCP then

Exception Oerator :- DIGRAVH.V LXSTS.VALUE (TAKGET)TH OPERATOR ID;
raise MCP LESS THtAN MET;

end if;

-- Check to ensure that MRT has a value for sporadic operators
If DXGRAPH.V-LXSTS.VALUE(TARGET) .THEHAT - 0 then
Exception-Operator :- DIGRAPH .V LISTS .VALUE (TARGET).T OPERATOR ID;
raise SPORADIC OP LACKS HaRT;

end if;

-- Check to ensure that the MAT is greater than the MET.
if DIGP.APH.V LISTS.VALUE (TARGET) .THE MEZT >

DIGRAPH.V-LISTS.VALUE (TARGET) .THE HRT then
Exception-Operator :- DIGRAPH.V LISTS .VALUE (TARGET) .THE OPERATOR ID;
raise MET NOT LESS THAN MRT;

end if;

-Guarantees that an operator can fire at least once

302

-before a rezpanse expected.
.LXOGPAPH.V-LXSTS.VALUZ(TARGZT) .TMEHMCI >

DXGRAPH,V LX 3 1,,VALUZ(TA.GZT).Tff9 WT then
raise MCP4OT LS3THfM HAT;

and if;

elac
-- Check to ensure that the PEKXOD in greater than the M&T.
if DXGILU'H.V-LXSTS.VALUE(TARGKT) .THEt M&T >

DXGP1.VLX3TS.VALUI(TAAOET) .TMZ PZRXOO then
Exception _Operator ;- DIGRAFH.V -L~iTS .VALUZ (TARGET) .T11Z0?KPATQ~k-1D,
raise IITNTLESSTIANVRIOO;

end If;

-- Check to ensure that the FINX3HyIXTHIK in greater than the MZT.
if DIGRAIH.VLXSTS.VALUE(TAAGET).TME WITHIN /e- 0 then

if DIGRAPH.V-LISTS.VALUE(TARGET) .TME IIET >
DXGRAPH.V LI5TS.VALUK (TARGET) .TNK WITHIN then

ExceptionOperator :- DIGPAPN.VLXSTS.VALUE(TARGET).TM3-OZRATORID;
raise HET IS GP.ATKP. THAN-rINISH WITHIN;

elsif DIGRAPH.V-LISTS.VALUE(TAkGET) .THE PERIOC <
DIGRAPH.V LISTS.VALUE(TARGET) .TNE WITHIN then

Exception Operator :- DIGP.API.V LXSTS.VALUE (',AAGET) .THEOf IPATOR ID;
raise PERIOD LES THAN FINISH WI-THIN

and if;
end if;

end if;

DIGRAPH.V LISTS .NEXT (TARGET);

end loop;
end VALIDATE DATA;

end FILE PROCESSOR;

* 303

APPENDIX V STATIC SCHEDULER GRAPH STRUCTURE

-- fileu: graphs 3.8
-- uthorb Miurat kZ1ic

-- issac Mi0otov
-- tOny d&Vi3

-dote: sntp 89
-- iiodifivd: nct 89 by Murat kiJlic

with SEQUE14CES;
with VSTRXU;G-l;

generic
typ* iVE is private;

package GRAPHS is

package V LISTS is new SEQTIENCES(VEP.TEX);
use V LISTS;

package V STRING is new VSTRINGS(80);
use V STRIN G;

subtype DATA-STREAM is VSTRING;
subtype MET is NATURAL;

type LINK DATA is
record
THE DATA STREAM :DATA STREAM:
TIlt FIRSTOPID :V LISTS.LIST;
THE7LINK MiET : MET : - 0;
THZ7SECOND OP ID : V LISTS.LIST;

end record;7-

package E -LISTS is new SEQUENCES(LXNK DATA):
use E-LISTS;

type GRAPH is
record
VERTICES :V LISTS.LIST;
LINKS : ELiSTS.LIST;

end record;

304

function EQUAL GRAPHS (GI : in GRAPH; 02 i in GRAPH) return bOOLEAN;

procedure EMPTY(G : out GRAPH);

function IS NODE(X : in VERTEX; G : GRAPH) return BOOLIAN;

futction IS LIHK(X : In VERTEX; Y : in VERTEX;
G : in GRAPH) return DOOLEAN;

procedure ADD(X : in VERTEX; G : in out GRAPH);

procedure ADD(L : in LINK DATA; G : in out GRAPH);

procedure REkOVE(X : in VERTEX; G : in out 4RAPM);

procedure RZMOVE(X : in VERTEX; Y-: in VERTEX; G : in out GRAPH);

procedure SCANNODES(G : in GRAPH; S : in out VLISTS.LIST);

procedure SCAN PARENTS (X : in VERTEX; G : in GRAPH;
S : in out V LISTS.LIST);

procedure SCANCHILDREN(X : in VERTEX; G : in GRAPH;
S : in out VLISTS.LIST);

procedure DUPLICATE(GI : in GRAPH; G2 : in out GRAPH);

procedure TSORT(G : in GRAPH; S : in out V_LISTS.LIST);

end GRAPHS;

* 305

APPENDIX W STATIC SCHEDULER GRAPH STRUCTURE

-- file: graphs b.a
-- author: murat kilic
-- isaac moatov

-- tony davis
-- date: sep 89
-- miodified: oct 89 by Murat kilic

with UNCHECKED DEALLOCATION;

package body GRAPHS is

procedure FREE is new UNCHECKEDDEALLOCATION(ELISTS.NODE, ELISTS.LIST);

function EQUALGRAPHS(G1 : in GRAPH; G2 : in GRAPH) return BOOLEAN is

function SUBSET(GI : in GRAPH; G2 : in GRAPH) return BOOLEAN is
L1 : V LISTS.LIST :-Gl.VERTICES;
L2 : E LISTS.LIST :-GI.LINKS;

begin
if not SUBSEQUENCE(L1, G2.VERTICES) then

return FALSE;
end if;
while NONEMPTY(L2) loop

if not ISLINK(VALUE(VALUE(L2) .THE.FIRST OP ID),
VALUE(VALUE(L2) .THE SECONDOPID), G2) then

return FALSE;
end if;
NEXT(L2);

end loop;
return TRUE;

end SUB-SET;
begin

-- equalgraphs
return (SUB SET(G1, G2) and SUBSET(G2, G1));

end EQUAL-GRAPHS;

procedure EMPTY(G : out GRAPH) is
begin

EMPTY (G. VERTICES) ;
EMPTY (G. LINKS) ;

end EMPTY;

306

function XS NODE (X : in VERTEX; G : GRAPH) return 500LZA)I is
begin

if LOOK4(X, G.VERTICES) /-null then
return TRUE;

else
return FALSE;

end If;
end IS-NODJ;;

function IS LINK(X :in VERTEX; Y :in VERTEX; G :in GRAPH) roturn SOOLZA) is
L :E -LISTS.LIST :~G.LINKS;

begin
while L /-a null loop

if VALUE(VALUE(L) .THE FIRSTOPID) - X and
VALUE(VALUE(L) .TNE SECOND OF ID) -Y then

return TRUE;
end if;
L :- L.NZXT;

end loop;
return FALSE;

end IS-LINK;

procedure ADD (X :In VERTEX; G in out GRAPH) is
begin

ADD (X, G.VZRTXCES);
end ADD;

procedure ADD (L : in LINK DATA;* G :in out GRAPH) is
begin

if LOOK4(L.THE FIRSTOPID.ELMENT, G.VERTICZS) I-null and
LOOK4(L.THES3ECOND OPID.LZKEHT, G.VIRTIC93) 1-null then

ADD (L, G. LINKS);

end if;
end ADD;

procedure REI#3VE (X :in VERTEX; G in out GRAPH) in
S : V LISTS.LIST;
L :V-LISTS.LIST;
PRZV : V LISTS.LIST :- null;

begin
SCANCHILDREN(X, G, S);
while NONEMPTY(S) loop

REMOVE(X, VALUE(S), G);
NEXT(S);

end loop;
SCAN-PARENTS(X, G, S);
while NONEMPTY(S) loop

REMOVE(VALUE(S), X, G);

* 3M7

N~EXT (S);
and loop;
REMOVI;(X, G.VERTICES);-

and REMO'J&;

procedure REMOVE(X ;in VERTEX; Y :in VERTEX; G :in out GRAPH) is
L : E -LXSTS.I.IST :"G.LINKS;
PREV I E -LXSTS.LIST :null;
TZMP : E LISTS.LXST :~null;

begin
while NON EMPTY(L) loop

if VALUE(VALUE(L) .THE FXRST OP -ID) - X and
VALUE(VALUE(E) .THE SECOND OP ID) -Y then

TEMP :- L;
NEXT(L);
FREE (TEMP);
if PREV /- null then

PREV.NEXT :- L;
elae
G.LINKS :- L;

end if;
else

PREV :- L;
NEXT(L);

end if;
end loop;

end REMOVE;

procedure SCAHNODES(G : in GRAPH; S in out V-LXSTS.LX3T) is
L : V LXSTS.LIST :- G.VERTICES;

begin
,owTY (S);
while NON EMPTY(L) loop

ADD (VALUE (L),)
NEXT(L);

end loop;
end SCAN NODES;

procedure SCAN PARENTS (X :in VERTEX; G :in GRAPH;
3 : in out V LISTS.LIST) is

L :E LISTS.LIST :- G.LINKS;

begin
EMPTY(S);
while NON EMPT'I(L) loop

if VALUE(VALUE(L) .THE SECONDOPID) - X thev,
ADD(VALUE(VALUE(L).THEFIRSTOP ID)., S);

end if;
NEXT (L);

end loop;
end SCAN-PARENTS;

308

procedure SCAM-CHILDRtN(X : in VERTEX; G : in GRPHW;
3 : in out V-LISTS.LXST) is

L : E LISTS.LIST :- G.LINKS;
begin

EMPTY(S);
while NON-EHRTY(L) loop

if VALUE(VALUE(L).TNEFrS"T OP ID) - X then
ADD (VALUE (VALUE (L) .THE SECOND 0? ID), 3);

end if;
NEXT(L);

esid loop;
end SCAN CHILDREN;

procedure DUPLICATE (01 :in GRAPH; G2 : in out GRAPH) is
begin

DUPLICATE(GI.VERTICESt G2.VERTICES)#;
DUPLXCATE(G1.LIHK3, G2.LINZS);

end DUPLICATE;

procedure T SORT(G : in GRAPH;* S in out V-L3ST.LX3T) is
01 GRAPH;
T, L, P : V LISTS.LIST;

begin
E*.PTY(T);
DUPLICATE(G, G1);-
SCAN-NODES (Gl, L);
while HON-E)4PTY(L) loop
SCAN PARENTS(VALUZ(L), Gi, P);
if not NON EI4HPTY(P) then

ADD (VALUE (L) , T) ;
IREHOVE (VALUE (L), 01);
SCAN -NODES(Gl, L);*

else
NEXT (L);

end if;
end loop;
SCAN -NODES(Gl, L);
if NON Et4PTY(L) then
EMP iU (s);

else
LIST REVERSE (T, S);

end if;1
end T SORT;

end GRAPHS;

* 30

APPENDIX X STATIC SCHEDULER HARMONIC BLOCK BUILDER

f- ile: hbb a.&
-- author: nmurat kilic
-date: aep 89
m- odified: oct 89 by zmurat kilic

with FILES; use FILES;
package HA ONIC BLOCK BUILDER is

procedure CALC PEKIODICEQUXVALENTS
(OpiT LIST :in out DXGRAII.V-LXSTS.LIST);

procedure TIHD BSE BLOCK
(PRECEDENFE LIST : in DIGPAPH.V LISTS.LXST;
BASE BLOCK : out VALUE)

procedure FIND BLOCK LENGTH
(PRECEDENCEZ LIST :in DIGPAPH.V LISTS.LIST;
HARMONIC BLOCK LENGTH : out INTEGER)

11O BASE BLOCK : exception;
NO 'OPERATOR IN LIST : exception;
MET NOT LES~S TihN PERIOD : exception;

end HARIA.0HIC BLOCK BUILDER;,

310

APPENDIX Y STATIC SCHEDULER HARMONIC BLOCK BUILDER

-file: hbb b.a
-author: murat kilic
-date: Sep 89
-modified: oct 89

with TEXT 10;
with FILES$; use FILES;
package body)IAPMHNCBLOCKBUILDER is

procedure CALC PERIODIC EQUIVALENTS
(OPT7 LIST : in out DXRPHVLISTS.LXST) is

V : DIGP.AP.VLISTS.LIST *.- OPT-LIST;

procedure VZRIrY-l (0 : in OPERATOR) is

0 -- Check to ensure that MRT has a value for sporadic operators
bezgin

if O.THE MET >- O.THE PERIOD then
Exception-Operator :- 0 *TMZ OPERATOR ID;
raise MET NOTLESSTHAI PERIOD;

end if;
end VERIFY 1;

procedure CALCULATEMNWPERIOD (0 : in out OPERATOR) is
DIFFERENCE : VALUE;

package VALUE 10 is new TEXT IO.INTEGERIO0(VALUE);
begin
DIFFERENCE :- O.THEMRT - O.THE MET;,
if DIFFERENCE < O.THEHCP then

O.THE PERIOD,: DIFFERENCE;
else

O.THE -PERIOD :-O.THE MCP;
end if;

TEXT IO.put("The new PERIOD in ->)
VALUE IO.put (O.THE PERIOD);*
TEXT_-IO.NEWLIME;
end CALCULATE NEWPERIOD;

0 311

begin -- main CALC -PERIODIC EQUXVALEt4TS
while DXGRAPII.*V LISTS.*NOtU EHPTY (V) loop

If DXGPAPH.V LISTS.VALUE(V) .THZ - PERIOD o then
CALCULATE 9EW PERIOD (V.ELEXENT);

end If;
VERIFYX (DXGRAPII.V LXSTS.VALUE (V));
DIGRPPH.V LISTS.NZXT (V);

end loop;
and CALCyFROICEQUVALENTS;

procedure rIND-BASE-BLOCK (PRECEDENCE LIST :in DXGR&?N.V-LISTS.LXST;
BASE BLOCK : out VALUE) is

P LIST : DIGRAPH.V -LXSTS..LXST :- PRECEDENCE LIST;
DIVISOR VALUE;
ALTERNATE-SEQUENCE : DIGRAPH.*V LXST . LIST;
BASE-BLOCK-SEQUENCE : DIGRAPH. -LISTS. LIST;

package VALUE-X0 is now TEXTJXO.IWTEGZR XO(VALUE);

function FIND k.INIIM MPERIOD, (P _LIST : in DIGRAPM.V-LIST3.LIST)
return VALUE is

V : DIGPAPH.V LISTS.LIST :- P LIST;
141W PERIOD :VALUE :- 0;

begin
if DIGRAPH.V -LISTS.NOIE)IPTY(V) then

MINW PERIOD :- DIGPh~i.V LISTS.VALUE(V) .THE PERIOD;
DIGRA.PII.V -LISTS.NEXT (V);,
while DIGRAPH.V LXSTS.NOI E*41U (V) loop

if DIGRAPH.VLISTS.VALUEr(V) .THE PERIOD < MIN 1PERIOD then
MIN1 PERIOD :-- DIGRAPH.V LISTS.vALu (v) .TH PERtIOD;

end if;
DIGRAPH.V -LISTS.NEXT(V);

and loop;
return MIN PERIOD;

else
raise NO OPERATOR IN LIST;

end if;
end FIND MINIKU4 PERIOD:

function M4ODE-DIVIDE (THE-PERIOD : in VALUE) return VALUE is
begin
return (THE PERIOD mod DIVISOR);

end HODE DIVIDE;

procedure INITIAL -PASS (P LIST :in out DIGRAPH.V LISTS.LIST;
BASE BLOCKSEQUENCE in out DIGRAPH.VLIESTS.LIST;
ALTERNATE S9EQUENCE :in out DIGRAPH.VLISTS.LIST) is

ORIG -SEQUENCE : DIGRAPH.V_-LISTS.LIST :- P LIST;
OP-FRO14 ORG SEQ : OPERATOR;

312

REMAINDER *: VALUE;
THE-PERIOD :VALUE;

begin
w'hile DIGRAPH.V LISTS.NO*I E*UTr(ORIG-SQWiNCE) loop

THE PERIOD :- DXGRAPN.V LIST3.VALUE (ORIG 3&QUENCI) .TKE-VR1RIOD;
RE8AINDEP. :- MODE DXVIDE (THE W&RIOD);
op rRom ORG SEQ ::" DIGRAfH.VLIZSTS.VALU9(ORXGS3QVaNCE);
if REzmAloiNE - 0 then

DIGRAK.V-LXSTS.ADD (0? FRc*4 ORG SEQ, sE%-LCK QVVSCK);
413e

DIGRAPH .V LISTS *ADD (OF FROM ORG SEQ. ALTBAMATZ SEQUENCE);
end if;
DIGRAH.V-LISTS.NEXT (ORXG SEQUENC);

and loop;
end INITIXL PASS;

begin -- main FIND BASE-BLOCK
DIVISOR :- FIND MINIMUM PERIOD (PLIST);
INITIAL PASS (P _LISTO BASEBLOCKSEQUENCE, ALTERNATE SEQUENCE):
while DIGRAPN.V LISTS .MOM- E.QTr(ALTXRNATE SEQENCE) loop

if DXV1SOR - 1 then
raise NO BASE BLOCK;
-- exit and terminate the Static Scheduler

else
DIVISOR :- DXV1SOR - 1;
ALTERNATE SEQUENCE :-null;
BASE BLOCK SEQUENCE : null;
INITIAL PAS(PLIT, BA3E BLOCK SEQUENCE, ALTPXATESE9QUZWC3);

and if;-
end loop;
BASE-BLOCK :- DIVISOR;

end FIND BASE BLOCK;

procedure FIND BLOCK LENGTH
(PRECEtDENCE LIST : in DIGRAP.V LISTS.LXST;
HARmONIC BLOCK LENGTH : out INTEGER) in

ORIG SEQUENCE :DIGRAPH.V-LISTS.LIST :- PRECEDENCE LIST;
NUMBERi : VALUE;
NUHBER2 :VALUE;
LCM : VALUE;
GCD : VALUE;
TARGETNO : VALUE;

function FIND GCD
(HU*9ER1 in VALUE; NUMBER2 : in VALUE)
return VALUE is NEW GCD : VALUE;

begin
while GCD /- 0 loop

if (NUMEER1 vtod GCD - 0) and (HUMBER2 mod GCD -0) then
NEW GCD :- GCD;

313

raturn 11F.WHGCO:

GCD :- GCD 1~;

end loop;
end FXD-GCD;

function FIND .CH (NUIBZRlf tIMEP2 :VALUE) return VALUE i.s
begin

return(lUMOM A MUHEK2) / GCD;
and FID L04;

begin -- umain FXND-BLOCK LENGTHI
if DXMHVLXT.0 ZHT(R.SEQUENCE) then
NUMBKl :- . DXGRAPHi.V *LSTS.VALUE(ORIG SEQUENCE) .ThE tERXOD;
DXGRAVN.V-LISTSI4EXT (ORXG SEQUENCE);
while DXGPAPH .V LISTS .NHIEIITX(ORXG SEQUENCE) loop

tlUIBER2 :-~ DIGRAPI!.V LXSTS.VALUE(ORIGSEQUt1.CE) .TrhZ PERIOD;-
If t1UHBER2 > HUMIERI then
GCO :- NWUaE1;
TARGET-NO :" HVtWER2;

0146
GCD :- NUMBER2;
TAV~GLT -NO :-. NVtIBERi;

end Lf;
GCD :w FIND GCD(GCD, TARGETNO);
LCH :- FxNDLCM(HuHsERX, HWIDER2);
HUMBER1 :- LCm
DIGRAPH.V-LISTS.NEXT(ORIG-SUENCZ);

end loop;
HAPMONIC BLOCK LENGTH :- 11CM;

else _

raise NOOPERhTOR IN LIST;
end if;

end FIND BLOCK LENGTH;

end IAPMONIC BLOCK BUILDETR;

314

APPENDIX Z STATIC SCHIEDULER ALGORITHMS

-file: scheduler *a
-author: murat kilic
-- date,, due 89
m-aodiiied: due 69 by laura 3. white

with TILES; use rtiLS;
package OPERATOR SCHEDULER is

procedure TEST DATA
(INPUT -LIST : in DIGPAM.v -LI3?.LXST;

HAAMONXC BLOCK LENGTH : in XNTEGERk):

procedure SCHEDULEJNMITIAL-SET
(PRECEDENCE LIST : in DIGaAPH.V-LISTS.LIST;
THE-SCHEDULE INfUTS : in out SCHEDULE INPMTS LX3T.LIS?:
HAP-40NIC-BLOCK-LENGTH : in INTEGER;
STP TINE : iii out ITEGR);

procedure SCHEDUILE [lEST Or-BLOCK
(PRECEDENCE LIST : in DIGRAP)I.V LISTS.LIST;
THE SCHEDULE INPUTS : in out SCHEDULE INPUTS ;,48T.LI3T;
HARM0NXC BLOCK-LENGTH : An INTEGER;
STOP TIME : In INTEGERA);

procedure SCHEDULE ITH EARLIEST START
(THE-GRAPH ; in DIGRRtbI.GRAPH;

AGENDA : in out SCHEDULE INPUTS LX3T.LIST:
HAMONIC BLOCK LENGTH : in INTEGER);

procedure SCHEDULE WITH EARLIEST DEADLINE
(THE GRAPH : in DIGRAH.GRAH;

AGENDA : in out SCHEDULE INPUTS LIST.Ll3T;
HARHONIC BLOCK LENGTH : in INTEGER);

procedure CREATESTATICSCHEDULE
(THE GRAPH :in DIGRAPH.GRAPH;
THE SCHEDULE-INPUTS : in SCHZDULE INPUT3 LIST.LIST;
HARMONIC BLOCK-LENGTH : in INTEGER);

MISSEDDEADLINE :exception:
OVERTIME : exception:

315

ISZSEDQIOP.AOR : XCOPtLiA;

andi OPZREO%.$:IOULXI,;

316

APPENDIX AA STATIC SCHEDULER ALGORITHMS

f le: schedular b.a
-author:, murat kilic
-date: nov 89
-modified: dec 69 by laura j. w.hit*

with FILES; use FILES;
with TEXT X0;
package body OPERATOR-SCHEDULEP. is

procedure TE3T DATA (INPUT L13T : In DIGPAR.V-LISTS.LXST;
HARMONIC BLOCK LENGTH : in INTEGER) in

procedure CALCTOTAL-TIME (IWUT_LkIST : in DIOaAI'.VLISTS.LIST:
)tARM0NIC BLOCK V#GTN : in IN4TEGER) is

V : DIGRhPH.V LIST3.LI3T :- ImPUT LIST;

TIMES : FLOAT :-0.0;

OP TIME F LOAT :-0.0;

TOTAL TIME : FLOAT :-0.0;

PER : OPERATOR;
BAD TOTAL-TIME : exception;

function CALC_NO OF PERIOS (ANONIC BLOCK LENGTH :in INTEGR;

beginTiE PRIOD : in INTEGER) retuarn LOAT is

return FLOAT (HARMONIC-BLOCK-LENG;TH) / FLOAT (THE PERIOD):
end CALC-m HOFPERIO

function MULTIPLY DY MET (TIMES : in FLOAT;

THE MET : in VALUE) return rLOAT is
begin

return TIMES * rLOAT(THE MET);

: nd MLTIPLY
BY MET;

function ADD TO SUM (OP TIME in rLOAT) return rLOAT is
begi.1
return TOTAL-TIME + OP TIME;

end ADD TO SUM;

begin --main CALC TOTAL TIME
while DIGRALPH.V LISTS.W NN EPTY(V) loop

PER :- DIGRAPH.V-LISTS.VALUE(V);

317

TIMES:- CALC-No-orFRioDs (HARMONIC BLOCK LENGTH, PER.THZEKRIoOD)
OPTtIME :- MULTIL LBY MET (TIl4ESI DIGRAI'M.V LISTS .VALUK (V) THE MIT);
TTAl, TIME :-- ADD TO SUM (OP TIME);W
if TOTAL TIME > FLOAT(IIARMONIC BLOCK LENGTH) then

raise iAD TOTAL TIME;
else

DIGRAPH.V LIXSTS. NEXT (V);,
end if;

and loop;
exception
when BAD TOTAL TIME ->

TEST VEA~iFXZD :.. zA~sE;
TEXT IXO.IUT(-The total execution time of the operators exceeds");
T&XTi""O.PUT LINE(- the)IAPI4OIC BLOCK LENGTH");
TEXT" X0.NEi LINE;

end CALC TOTAL TIME;-

procedure CALC HALF PERIODS (INPUT LIST :in DIGFM)(.V-LISTS.LIST) is

V : DXGRAPH.V-LXSTS.LXST :- INPUJT-LIST;
RALF PERIOD : FLOAT;
FAIL7HALF-PERXOD : exception;

function DIIEPRIDB- (THE PERIOD : in VALUE) return FLOAT is
begin

return FLOAT(THE PERIOD) / 2.0;
end DIVIDE-PERIOD BY_2;

begin --main CALC HALF PERIODS;
while DIGRAPH.v" LISTS.140N EMPTY (V) loop

HALF PERIOD :;; DIVIDE -PERKIOD BY 2 (DIGRAPH.V LISTS.VALUE (V) .THE -PERIOD);
if FLOAT(DXGKAPH.V LISTS.VALUE(V).THEHMT) 3: HALF IPERIOD then
Exception _Operator :- DIGRP.EH.V LISTS.VALUE (V) .THZ OPERATOR_ID;
raiae FAIL HALF PERIOD;

else
DIGRAPH.V-LISTS.NEXT (V);

end if;
end loop;
exception

when FAIL HALF PERIOD -

TEST VERIIED :-- FALSE;
TEXTiO1.PUT (-The MET of Operator)
VARSTRING.PUT (Sxception _Operator);
TEXT XO.PUTL1119 (" is greater than half of its period.*);

end CALC HALF7"PERIODS;

procedure CALC RATIO SUM (INPUT-LIST : In DIGRAPH.VLISTS.LIST) ia
V :DIGRAPH.V-LISTS.LIST :- INPUTLIST;
RATIO :FLOAT;
RATIO SUM : FLOAT :- 0.0;
THE MET :VALUE;

THE LPERXOD : VALUE;
RKATIO TOO BIG : exception;

function DIVIDE MET BY-PRO (THE MET : in VALUE;
THE PERIOD : in VALUK) return FLOAT is

begin
return FrLOAT (THLP MET) / FLOAT (THE 1PERIOD);'

end DIVIDE MET BY PE.RIOD;

function ADD-TO TIME (RATIO : in FLOAT) return rLOAT is
begin

return RATIO SVH + RATIO;
end ADD-TO TIME:

begin --main CALC: RATIO SUM
whila DIGRAPH.V -LISTS .NON EMTY (V) loop

THE MET :- DIGRAFH.V C1STS.VALUt(V).THXMET;
THE7PERIOD :- DIGRAPH.V -LISTS.VALU,(V) iK"_ZPZRIOD;
RAIO :- DIVIDE MET B-ERO(THE ME?, TMEPERIOD);*
RATIO SUM :- ADD TO TIME (RATIO);
DIGRAPH.V LISTS.NEXT(V);

end loop;
if RATIO SUM > 0.5 then

raise RATIO TOO BIG;

e nd if;
exception0 when RATIO TOO BIG ->

TEST VERIFIED :- FALSE;
TEXTiXO.PUT (-The total MET/PERIOD ratio sum of operators is*);
TEXTIO.PUT LINE (- greater than 0.5");

end CALC-RATIO SUM;

begin --main TEST-DATA
CALC TOTAL TIME (INPUT LIST, HAft4ONIC BLOCK LENGTH);
CALC HALF -PERIODS (INPUT LIST) ;

CALCRATIO SUM(INPUT LIST);
end TEST-DATA;

procedure VERIFY TIME LEFT (HAROIIC BLOCK LENGTH : in INTEGER;
STOP TIME : in INTEGER) is

begin
if STOP-TIME > HARMONIC BLOCK LENGTH thin

raise OVER TIME;
-- exit and terminate the Static Scheduler

end if;
end VERIFY TIME LEFT;

procedure CREATEINTERVAL (THEOPERATOR : in OPERATOR;
INPUT : in out SCHEDULE INPUT3;
OLDLOWER : in VALUE) in

LOWER BOUND : VALUE;

319

function CALC LOWER DOWVO return VALUE is
begin

-- ince CREATC INTERVAL function is used in both 3CHEDULE INITIAL SET
a- nd SCIHEDULE REST Or BLOCK (OLD-LOWER 1/- 0) check is needed. In

-case of the operator is scheduled aoemewhere in its interval and
-- (OLD-LOWER /- 0).,
-this check guarantee* that the periods will be consistent.

if (OLD-LOWER I-0) and (OLD LOWER 4 INPUT.THE -START) then
LOWER-BOUND :-OLD-LOWER + THE OPERATOR.THE-PERIOD;'

else
LOWER-BOUND X- NPUT.TiHE START + THE OPERATOR.THE PERIOD;

end if;
return LOWER-BOUND;

end CALC LOWER BOUND;

function CALC UPPER BOUND return VALUE Is
begin

If THE OPERhTOR.THZ-WITHIN - 0 then
return LOWER -BOUND + THE 'OPERATOR.THE PERIOD - THE OPERATOR.THEMET;
-if the operator has a WITHIN constraint, the upper bound of the
-interval is reduced.

else
return LOWER BOUND + THE OPERATOR.THE WITHIN - THlE OPERATOR.THZ MET;

end if;
end CALC UPPER BOUND;

begin --main CREATE INTERVAL
INPUT.THE LOWER :-CALC LONER -BOUND;
ThPUT.THE UPPER -CALC UPPERBOUND;

end CREATE INTERVAL;

procedure SCHEDULE INITIAL SET
(PREFCEDENCE7LIST : in DIGRAPH.VLISTS.LIST;
THE SCHEDULE INPUTS : in out SCHEDULE INPUTS LIST.LIST;
HARMONIC BLOCEK LENGTH : in INTEGER;
STOP TIME :in out INTEGER) is

V : DIGRAPHi.V LISTS.LIST :- PRECEDENCE-LIST;

START TIME : INTEGER :- 0;
NEW XIPUT :SCHEDULE INPUTS;
OLD LOWER :VALUE :-O0;

begin --SCHEDULEINITIAL SET
while DXGRAPH.V LISTS.NON -EMPTY(V) loop

Exce!'tion Operator :- DIGRAPH.V LISTS.VALUE(V) .THE OPERATOR XD;
NEW -INPUT.THE OPERATOR :- DIGRAPH.V LISTS.VALUE(V) .THEOPERA TORID;
NEW INPUT.THE7START :- START TIME;
STOP TIME :- START_-TIME + DIGRAPH.V LISTS.VALUE(V).THEMET;
VERIFY TIME -LEFrT(HARIIONICBLOCKLENGTH, STOP-TIME);
NEW INPUT.THE STOP :- STOP TIME;

START-TIME :- "STOP TIME;

320

-for every operator ina SCHEDULE INITIAL 3ETt OLD LOWER is zero.
-SO We Always send zero value to CREATEiNXTERVAL.

CREATE I NTERVAL (DIGRAPHV -LISTS .VALUE (V), NIWINTUT, OLID-LOOMl);

SCHEDULEINPUTS LIST.ADD (NEINPUT, THE SCHEDULE INPUTS);
DIGRAPH. -LISTS *NEXT (V);

end loop;
and SCHEDULE INITIAL SET;

procedure SCHEDULE REST OF BLOCK
(PRECEDENCE LIST: in DIGRAPH.V LISTS.LIST:
THE SCHEDULZEINPUTS : ira out SCHEDULEI NPUTS LXST.LXST:

HARMO4NIC BLCK LENGTH, : in INTEGER;
STOP TIME : in INTEGER) in

V :DIGRAPH.V-LISTS.LXST :- PREDENCE LIST;
TEMP : SCHEDULE INPUTS LIST.LIST :- THE SCHEDULE INPUTS;
V LIST : DIGRAPH.V LISTS.LIST;
P : SCHEDULE INPUTS7LxST.LIST;
S : SCHEDULE INPUTS LIST.LIST;
START TIME : INTEGER :-0;

TIME STOP :INTEGER :~STOPTIME;
NEWINPUT : SCHEDULEINPUTS;
OLD LOWER : VALUE;

begin
DIGRAPH.V LISTS.DUPLICATE (PRECEDENCE LIST, V _LIST);

SCEUEIPT-XTLS-EVRETESHDL-MUS P);

loop
while SCEUEIPT LS.O-MT(1) loop

if SCHEDULE INPUTS LIST.VALUE (') .THE LOWER < HARMONIC -BLOCK LENGTH then
NEW INXPUT.THE -OPERATOR :- DIGRAPH.VLISTS.VALUi(V).Ta OEEZPATOR ID;

-- chack if the operator can be scheduled in its interval
if SCHEDULE INPUTS LIST.VALUE(P) .THE UPPER - TIME STOP

>- DIGRAPH.VLISTS.VALUE(V).THE MST then

if SCHEDULE_-INPUTS -LIST.VALUE (P) .THE LOWER >- TIME STOP then
START-TIME :-SCHEDULE INPUTS LIST.VALU (P) .TJE -LOWER;

else

START -TIME :-TIME STOP;
end if;

NEW INPUT.THESTART :-START TIME;
NEW INPUT.THE_-STOP :-START TIME + DIGRAPII.V LI5TS .VALUE (V) .TIZ MUT;

TIME_-STOP :-NEW_-iNPUT.THESTOP;
OLDLOWER :-SCHEDULE INPUTiS LIST.VALUE (F).THE -LOWERt;

CREATEINTERVAL(DIGRAPH.VLISTS.VALUE(V), NEW INPUT, OLD LOWER);
SCHEDULE INPUTS LIST.ADD (NEW INPUT, TEMP);
SCHEDULE INPUTS LIST.ADD (HNW NPUT, S);

ExceptIon,_Operator :- DIGRAkPH.V LISTS .VALUE (V) .THE OPERATORID;
VERIFY TIME LEFT (HAMONIC BLOCK LENGTH, TIMESTOP);

321

DIORAPII.V LISrS.RlEXT(V);
SCHEDULE INPUTS LIST.*NEXT (P) ;

If.L the operator can not be scheduled in its interval raise the
-- exception
el3se
Exception Operator :- DIGRM'H.VJAISTS.VALUE (V) .THE OPERATOR ID;

raise HISSED DEADLINE;
end if;

else
DXGRAPII.V LISTS. RaMOVE (DIGRAPH ,V LXSTS..VALUE (V), V LIST);
DIGRAPH.V LISTS.NEXT CV);

SCHEDULE INP UTS-LIST.NEXT(P);*
end if,

end loop;
if SCHEDULE-INPUTS LIST. NON -E1PTY CS) then
SCHEDULE INPUTS LIST. LIST REVERSE (S, P):
SC11EDULE INPUTS LIST.EMPTY (3);
V :- V LXST;

else
exit;

end if;
end loop;
SCHEDULE INPUTS LXST.LISTREVERSE (TEMP, THE-SCHEDULE-INPUTS) ;

end SCHEDULE-REST OF-BLOCK;

procedure BUILD OP INFO LIST
(THE7GRAPHI in DXGRAPH.GRAPH;
THE7OP INFO LIST :in out OP INFO LIST.LIST) is

-this procedure finds e-ach operator's ;uccessors and predecessors
-first adcreates the OPERATOR INFO LIST.

V :DIGRAPH.V-LXSTS.LIST :- THE GRAPH.VERTICES;
S : DIGRAPH.V-LXSTS.LIST;
P : DIGRAPH.V LISTS.LIST;
NEW-NODE :OP INFO;

begin
while DIGRAPH.VLISTS.NON EMPTY(V) loop
DIGRAPH.SCAN CHILDREH(DIGRAPH.V LISTS.VALUE(V), THE GRAPH, S);
DIGRAPH.SCAN PARENTS (DIGRAPH.VLISTS.VALUE(V), THE GRAPH, P);
NEW NODE.NODE :- DIGRAPH.V -LISTS.VALUE CV);
NEWNODE.SUCCESSORS :- S;
NEW NODE.PREDICESSORS :- P;
OP INFO_-LIST.ADD(NEW 'NODE, THEOP INFO LIST);
DIGRAPH.V -LISTS. EXT(V);

end loop;
end BUILD OPINFOLIST;

procedure PROCESS-EST -END -NODE
(MAY BE-AVAILABLE: in out SCHEDULE INPUTS LIST.LIST;
OPT : in OPERATOR) is

322

-transfer the OPERATOR recordi into SCHEDULE IMF record and adds
-that into the MAY AVAILABLE LIST for the Earliest Start Scheduling
-- Algoritlz~i. Initially aln thet values are zero.

NEW-NODE :SCHEDULE-INPUTS;

begin
NEW NODE.THE OPERATIOR :-" OT.THE OPERATOR ID;
SCHEDULE INP'UTS LXST.ADD (NEW NODE, MAY BEAVAILABLE);

end PROCESS EST END NODE;

procedure PROCESS KOL END NODE
(MAY _BE -AVAILABLE: in out SCHEDULE INPUTS LIST.LIST;
OPT :in OPERATOR) is-

--transfer the OPERATOR record into SCHEDULE INFrO record and adds that
--into the MAY AVAILABLE LIST for the Earliest Deadline Scheduling
-- Algorithm. Initially7all the values are zero.
NEW-NODE : SCHEDULE-INPUTS;

begin
MN NODE.THE OPERATOR :- OTHEOPERATOR ID;
NEW NODE.THE LOWER :-0; -- we can omit this, because it's already zero.
if OPT.THE WI1THIN 1 0 then

NEW N ODE.THE UPPER :-OPT.THE WITHIN;
else

NEW NODETHE UPPER :-OT.THE PERIOD;
end if;

SCHEDULE INPUTS LIST.ADD (NEWNODE, MAY BE AVAILABLE);
end PROCESS EDL END NODE;

function FIND OPERATOR(2THEOPINFOLIST ; in OPIxmrOLIT.LXsT;
ID : in OPERATOR I D)
return OP INrOLXST.LIST is

-- finds the operator that we use currently to get the required information.
TEMP :OP INFO LIST.LIST :- THE OPINFOLIST;

-- assum~ed that it's guaranteed to find an operator.
begin
while OP_INFO_LIST.NON EMPTY(TEMfe) loop

if VARSTRING. EQUAL (OP INrO LXST.VALUE (TEP) .NODE.THE OPERATOR ID, ID) then
return TEMP;

end if;
OP INrO -LIST.NEXT(TH);

end loop;
end FINDOPERATOR;

function CHECK., 'ENDA(THE NODE : in OP INFO;
AGENDA : in SCHEDULEINPUTS LIST.LIST)
return BOOLEAN is

-checks the AGENDA list to see if all the predecessors of the
-- operator are in there.

P : DIGRAPH.V LISTS.LIST :-THENODE.PREDICESSORS;

* 323

A : SCIIEDULEIZUTS-LIST.LIST :- AGENDA;
OK : BOOLEA t :- FALSE;

begin
while DIGRAPI!,V LXSTS .HON EMPTY (1') loop
while SCHEDULE. INPUTS LIST.NON-,Z¥TY(A) loop

if VARSTAMHGEQUAL (DIGRAPH.V LISTS ,VALUE (P) .THE OPEATOR XD,
SCHEDULE .. IsUTS.LISTVALUE(A) ,TH O EPATOR) then

OK :- TRUE;
exit;

end if;
SCHEDULE. NPUTS LIST .NEXT (A);

end loop;
if OK then

DIGiIkll.V.LST. NEXT (P);
A :, AGENDA;
OK : FALSE;

else
-- if the pointer reached to the end of the AGENDA, it msans the
-- operator is not in AGENDA, if so return FALSE.
return OK;

end if;
end loop;
-- if the pointer reached to the end of the predecessor list, it
-- means the operator is in AGENDA.
OK :- TRUE;
return OK;

end CHECK AGENDA;

procedure EST, INSERT

(TARGET : in SCHEDULE INPUTS;
MAY BE AVAILABLE : in out SCHEDULE INPUTS LIST.LIST) is

-- used to insert the operators into the MAY BE AVAILABLE list to
-- schedule for the Earliest Start Scheduling Algorithm.
PREV : SCHEDULE.INPUTS LIST.LIST :-null;
T : SCHEDULE INPUTS LIST.LIST :-MAY BE AVAILABLE;

begin
if NOT (SCHEDULE INPUTS LIST.NON FJMTY(T)) then

-- when MAY BE AVAILABLE list is empty, add the operator immediately.
SCHEDULEINPUTSLIST.ADD (TARGET, MAY_BEAVAILABLE);

else

-- in case the target operator's EST is smaller than the first operator's
-- EST add the operator to the list immediately.
if TARGET.THE LOWER < SCHEDULE INRUTS LIST.VALUE(T).THE LOWER then
SCHEDULE INPUTSLIST.ADD(TARGET, MAYBEAVAILABLE);

-- in case the operator with the same EST is in the list, do not insert,
-- otherwise; insert the operator in its order.
elsif NOT(SCHEDULE -INPUTSLIST.MEMBER(TARGET, AYBEAVAILABLE)) then

while SCHEDULE INPUTSLIST.NONEMPTY(T) loop

324

If TARQET.THE LOWER > SCHEDULE INUTS LIST.VALUE(T) .THE LOWEP. then

PREV :- T;
SCHEDULE INPUTS LXST.NEXT (T);

else
exit;

and if;
end loop;
SCHEDULE INPUTS LIST.ADD(TARGXT, T);
if SCHEDULE -INPUTS -LIST.HOK EHPTY (P3EV) then

PRZV.NE)T :-- T;
else
MAY 5Z AVAILABLE :- T;

cnd ii;

end if;
end if;

end EST INSERT;

procedure ZDLINSERT
(TARGET : in SCHEDULE INPUTS;
HAYBE-AVAILABLE : in out SCHEULE INPUTS LXST.LIST) is

-used to insert the operators into the HAY BE AVAILABLE list to
-schedule for the zarlie~t Deadline Scheduling Algorithm.

PREV :SCHEDULE INPUTS LIST.LXST :-null;
T :SCHEDULE INPUTILXST.LIST :- AY BE AVAILABLE;

begin
if NOT(SCHEDULE -INPUTS -LXST.NONEHZPTY(T)) then

SCHEDULE INPUTS LIST.ADD(TAi.GET, HAY BEAVAILABLZ);
else

if TARGET.THE UPPER. < SCHEDULE INPUTS LIST.VALUE(T) .THE UPPER then
SCHEDULE INPUTSLIST.ADD(TARGET, MA"_BEAVAILABLE):

elsif NOT(SCHEDULE INPUTSLXST.HEHDER(TARGET, MAYBEAVAILABLE)) then
while SCHEDULEZHPUTS-LIST.NOHKHPTY(T) loop

if TARGET.THE_-UPPER > SCHEDULEINPUTS LIST.VALUE(T) THE UPPER then
P3EV :m T;
SCHEDULE INPUTS LIST.NEXT (T);

else
exit;

end if;
end loop;
SCHEDULE -INPUTS LIST.ADD(TARGET, T);
if SCHEDULE_-INPUTS_-LIST.NONEHPTY(F.EV) then

PREV.NEXT :- T;
else
MAYBEAVAILABLE :- T;

end if;
end if;

end if;
end EDL INSERT;

* 325

function OPERATORIH11LIST(OPTIXD in OPERATOR ID;

IN LIST :in SCHEDULt INPUT3 LX3T.LIST)
r~eurn BOOLEAN is

-this is uzed to check if the operators in successors list are
-already in the complete HAY DE-AVAILABLE list for both tST and
-- EOL algorithms.

TEMP :OPERAWRIXD;
L :SCh1EDULE7INPUTS LIST.LIST :- IN LIST;

begin
while SCHEDULE INPUTS -LXST.NOH EMPTY (L) loop

TEMP :- SCHEDULE INPUTS -LIST.VALUE (L) .THE OPERATOR;
if VARSTRXNG.T.QiUAL(TEMP, OPT ID) then

return TRUE;
else
SCHEDULE INPUTS LIST. NEXT (L);

end If:
end loop;
return FALSE;

end OPERATOR IN LIST;

procedure EST INSERT SUCCESSORS Or OPT
(THE -NODE :in OP INFO;
STOP TIME :in VAL~UE;
MAY iE AVAILABLE. in out SCHErDULE IXNPUT3_LIST.LIST) i

-- inserts the successors of the selected operator into
-MAY BE AVAILABLE list in their orders if they do not
-- exist in the list.

S :DIGRAPH.V -LISTS.LIST :- THE NODE.SUCCESSORS;
T :OPERATOR;
OPT :OPERATOR :- THE NODE.NODE;
TARGET :SCHEDULE-INPUTS;

begin
while DIGRAPH.VLISTS.NON -EMPTY(S) loop
T :- DIGRAPH.V LISTS.VALUE(S);
if NOT (OPERATOR IN -LIST (T.THE OPERATOR ID, MAY - E -AVAILABLE)) then
TARGET.THE OPERATOR :- DIGRA PH.V -LISTS.VALU (5) .THE OPER.ATOR ID;
TARGET.THE7LOWER :- STOP-TIME;
EST INSERT (TARGET1 MAY BE-AVAILAE);

end if;
DZGRAPH.V-LISTS.NEXT(S);

end loop;
end EST INSERT SUCCESSORS OF OPT;

procedure EDL INSERT SUCCESSORS Or-OPT
(THE -NODE :in OP INFO;
STOP TIRS in VALUE;
COMPLETE LIST in out SCHELrULE INPUTS LIST.LIST;
MAYBE-AVAILABLE in out SCHEDULE-INPUTSLIST.LIST) is

-inserts the successors of the selected operator into
-MAY BE-AVAILABLE list in their orders if they do not exist in

326

-- the list.
S : DIGRAPH.V LXSTS.LXST :-THE WOOE.SUCCZSSO.;
T : OPERATOR;
OPT : OPERATOR :'THE NODZ.NOOE;
TARGET :SCHEDULE INPUTS;

begin
while DIGP.APH.V LISTS SNON EMWTY (S) loop

T :- DIGRAPH.V LISTS.VALUE(S);
if NOT (OPERATOR IN LIST (T.?HE OPERATOR -ID, COMLTE LIST)) then
TARGZT.THE -OPERAOR :- T,THE OPERAkTOR ID:

TARGET.THi LOWIER :- STOP TIME;
-while we are adding the auccessors, the deadline of these operators
-are calculated by adding either their finish -within if exists, or
-period to the stop_ time of the last operator.

if T.THE WITHIN 1- 0 then
TARGET.THE UPPER :-STOP TIME + T.TME-WITHIN;

else
TARGET.THE UPPER :~STOP TIME + T.THZ PERIOD;

end if;
EDL INSERT (TARGET, MAY BE-AVAILABLE);

end If;
DIGRAPH.V -LISTS .NEXT (S);

end loop;
end EDL INSEP.T SUCCESSORSOF OPT;

procedure PROCESS-EST AGENDA
(THE OP I NrO LIST: in OP 'INFO LIST.LIST;

MAYBEiAVAILABLE: in out SCHEDULE INPUTS LXST.LIST;

AGEHO - in out SCHEDULE INPUTS LIST.LIST;
HAAMONIC BLOCK LENGTH : in INTEGER) is

-process the MAY BE AVILABLE list to produce AGENDA list which is
-used to create a schedule for Earliest Start Scheduling Algorithm.

V :SCHEDULE INPUTS LIST.LIST :-MAY SE-AVAILABLE;
p: SCHEDULE INPUTS LIST.LIST;

A : SCHEDULE INPUTS LXST.LIST;

TEMP : OP INFOLIST.LIST;
TARGET : SCHEDULE-INPUTS;

NEW INPUT : SCHEDULE INPUTS;
THE71NODE : OP INFO;-
CONTINUE : BOOLEAN;
STOPTIME : VALUE :- 0;
OPT :SCHEDULE INPUTS;

EST :INT3kER;

begin
while SCHED.OLE INPUTSLIST.VALUE (V) .THE LOWER < HAROKC BLOCKLENGTH loop

-no need to check if all the predicessors are in the AGENDA, because
-this is the first node and has no predecessors.

OPT :-SCHEDULEINPUTS LIST.VALUEIV);
TXMP :-FINDOPERATOR(THEOPINFO_-LIST, OPT.THE OPERATOR);

327

THIE NODE :- OP INFO LST.VALUE (TEMP);
if OPT.Tim LOWER > 0 then
CONTINUE7:- CHIECK AGENDA(THE NODE, AGENDA);

t0130

CONTINUE :- TRUE;
end if;

-if the opt.is not an end node check if all its Successor* in AGENDA.
-if not, select the other operator and repeat the same procedure.

while NOT CONTINUE loop
SCHEDULE -INPUTS LIST. NEXT (V);-
OPT :~SCIIEDULE INPUTS XXST.VALUE.(V);
TEMP :-FIND opERATOR(THE- op INFO LIST, OPT.THE OPERATOR);
THE NODE :- OP -INFO LIST.VALUE(TEHiP);

if OPT.THELOWER > 0 then

CONTINUE :-CHECK-AGENoA(THE-NODE, AGENDA);
aloe

CONTINUE :-TRUE;
end if;

end loop;
TARGET :- SCHEDULE INPUTS LIST.VALUE(V);
SCHEDULE INUTS LIT.RHOVE(TARGEr, MAY-BE-AVAILABLE);

ExceptionOperator :- TARGET.THE ODPERATOR;
VERIFY TIME -LEFT(HARMONHIC -BLOCK -LENGTH, STOP TIME);

if TARGET.THE LOWER > STOP TIME then
-- zero initially for the first one
TARGET.THE START :-TARGET.THE LOWER;

else
TARGET.THE-START :"STOP-TIME;

end if;

STOP -TIME :- TARGET.THE -START + THE NODE.NODE.THE MET;
TARGET.THE -STOP :- STOP TIME;
SCHEDULE INPUTS -LIST.ADD(TARGET, AGENDA);
EST t- TARGET.THE START + THE-NODE.HODE.THE-PERIOD:

-if the operator can be scheduled again, put it back into the
-MAY BE AVAILABLE list in its order with the new ES?.

NEW -INPUT.THE OPERATOR :- TARGET.THE OPERATOR;

NEW XNPUT.THE LOWER :- EST;
ES? 'INSERT(NW INPUT, MAY BE AVAILABLE);
ES? INSERT SUCESSORS OF OP? (THE NODE, STOP-TIME, MAY BE AJVAILABLE);
V :;; MAYBEAVAILABLE;

end loop;

A :- AGENDA;

SCHEDULE -I NPUTS LIST.LIST -REVERSE(A, AGENDA);

end PROCESS-ES?_AGENDA;

procedure PROCESS -EDL AGENDA
(THEOP_-INFO_-LIST: in OP -INFO -LIST.LIST;

COMPFLETE -LIST : in out SCHEDULE_-INPUTS LIST.LIST;
AGENDA : i.n out SCHEDULE INPUTSLIST.LIST;

328

HAF'.HNXC BLOCK LENGTH in INTEGER) is

-process the MS-E-AVILABLE list to produce AGZNDA list which is
-uacd to create a 3chedule for Earliest Deadline Scheduling Alorithm.

V : SCHEDULE INPUTS LIST.LIST -CCLZTZ LIST;
TEMP :SCHEDULE IN? UT3SLIST.LIST -COHPLETK LIST;
A :SCHEDULE INPUTS LIST.LI3T;
T :OPI XNIOIST.L1iT;
PREV SCHEDULE INP UTS LXST.L13T :~null;
TARGET :SCHEDULEI-NPUTS;1
MN INPUT : SCHEDULEi-NPUTS;
THE7NODE :OP I Nr;
CONT7INUZ BOOLEAN;
STOP TIME : VALUE :- 0;
OPT : SCHEDULE -INPUTS;
EST : INTEGER:

begin
while SCHEDULE INPUTS LIST.NOM -EWTY(TEH) loop

if SCHEDULE INPUTS ZI3T.VAL6E (TE1?) .THZELOWER < KMAKOhIC BLOCK LENGT then
-- no need to check if all the pr~edeceusors are in the AGENDA
OPT :SCHEDULE INPUTS LIST.VALUE(V);
T :- FND OPtRATOR(THE OP INFO LIST, OPT.THE OPERATOR);
THE NODE :- OP INFO LIST.VALUE(T);
it OPT.THE LOWERK > 0 then

-when the earliest start time of the operator in not zero, we
-need to check if all the predicessors of the operator are in
-AGENDA. No check otherwise.

CONTINUE :-CHECK-AGENDA(THE-NOOK, AGENDA);
els
CONTINUE :-TRUE;

end if;

-- if the opt. is not an end node check if all its successors
-in AGENDA. if not, select the other operator and repeat
-- the same procedur~e.

while NOT CONTINUE loop
SCHEDULE - NPUTSLIST.NEXT(V);
OPT :- ZUL7NPT LITVLU(
T :-FIND OPERPAToR(THE op Ixro LIST, OFT,,THE OPERATOR) ,*
THE NODE : OP INrOLIsT.vALuz(T);
if O;PT.THE LOWER-P > 06 then
CONTINUE :-CHECK-AGENDA(THE-NODE, AGENDA);

else
CONTINUE :-TRUE;

and if;
end loop;
TARGET :- SCHEDULEINPUTS LIST.VALUE(V);
SCHEDULEINPUTS LIST.R.E1OVE (TARGET, TEN?);
if SCHEDULEINPUTS LIST.NON EHPTY(PREV) then

329

PREV.1lEXT :- TEtP;

aloe
CO.PLET...IST :- rHr;

end If;
Zxception-Opeaator :- TARGET.THEOPZATOR;
VVRErY TXME LEFT (IOM -C BLOCK LENGTH, sTOP TIMj);
if TAROT.Tte .LOWEr > STOP TIM then

--zero initially faoz th first one
TARG;T.THE START TAI-IT.Th LOWER;

else

TARGET.THESTART :' STOP TIME;
end if:
STOP TUIS :- TARG&T.TIIE START + Til NODE.NODE,Tlt ZTI
TAKFGET.THE STOP :- STOP TIME;
SCHEDULE INPUTSLIST.ADD(TARGET, AGENDA);
EST :- TARGET.THE START + THC NODE.HODE.THZ PERIOD;
NEW NPUT.T| IE OPEATOR :- TARGET.TiE OPEATOR;
NEW XtPUT.TIE LOi4E :- EST;

if THE HODE.NODE.Tlt WITHIN /- 0 then
NEW iNPUT.THE UPPEP. :EST + THE NODE.NODE.THE WITHIN;

el~o

NEW INPUT.T il UPPER : EST + THENOD.NODE.THEPERZOD;
end if;
EDL INSERT (NEW.INPUTO TEMP);

-- this is to keep track of the COMPLETE LIST pointer
if SCHEDULE INPUTS LIST.NONEMPTY(PP$V) then
-- the pointer is pointing a record other than fir**, one.
PREV.NEXT :- TEMP;

else
-- the pointer is pointing the first record in the list.
COMPLETELIST :- TEMP;

end if;

EDL INSERT SUCCESSORS OF OPT
(THE NODE, STOP TIME, COPLTZLIST, TEMP);

V :- TEMP;

-- this is to keep track of the COMPLETE-LIST pointer
if SCHEDULE 1NPUTS LIST.NON EMPTY(PREV) then
-- the pointer is pointing a record other than first one.
PRY.V.NEXT :- TEMP;

else
-- the pointer is pointing the first record in the list.
COMPLETE LIST :- TEt.P;

end if;

else
PREV :- TEMP;
SCHEDULEXNPUTS LIST.NEXT(TEMP);

330

V :-' wTM;
end if;
and loop;

while SCHEDULE INPTS L'ISTNOH - HITY (TEK) loop
If not (OwrzproR -IN LIST

(S~CHEDULE INPUTS -LIST.VALUB (rus).TNE OPIPAT06t,
AGENDA)) then

Exception, Operator :- SCHEDULE PNUTS LIST.VALUE (THI) .TNE OCEBRATOR;i
ra$ -e MISSED OERATOR;

and If;
SCIEDLZIXNPUTS*LIST.NEXT (TL't);

and loop;
A ;- AGENDA;
SCIHEDULE INPUTS LIST. LIST REVERS (A* AGENDA);

end PPROCZSS ZOL AGENDA;

procedure SCHEDULE -WITH EARLIEST START
(THE GRAPH - in DXGPArHGRPArH;
AGENDA :ina out SCNEDULE INPUTS LIST.LIST;
HAPMONIC BLOCK LENGTH : in INTEGZR) is

-- used to find a feasible schedule for Earliest Start Scheduling Algorithm.
THE OP INFO LIST :OP XFO LIST. LXST;

HA: BEr~~ AVIAL SCHDUL IUT LIST.LIST;
o m7L :- INTEGE, :- HAP1EKXC BLOCK LENGTH;
C:o 0? INFO LIST.LX3T;
P : OP INFO;,

begin
BUILD OP INFO LIST (THE GKAPH, THE OP INFO LIST);
L :- THlE OP INFO LIST;

-put all the en;d nodes, which has no predicessorms, into
-- AY B E AVAILABLE list

while OP INrO -LIST.NON EHITY (L) loop
p :- OF INFO LIST.VALUE(L,):
if NOT (DIGRA4.V LXSTS.kO-bQTYUP.FRZDXCESSORM)) then
PROCESS ESEND NOE(MAY BE AVAILABLE, P.MODE);

end if;
OP INFO -LIST.NEXT (L);

end Lop;
PROCESS EST AGENDA(THE OP INFO LIST, HAY BE AVAILAULE, AGENDA, kB_L);

end SCHEDULE WiITH EARL~IST START;

procedurt SCHEDULE -WITH EARLIEST DEADLINE
(THE GRPH : in DIGPAPH.GP.APH;
AGENDA : in out SCHEDULE INPUTSLIST.LIST;
HAP440MIC-BLOCK-LENGTH : in INTEGER) is

-used to find a feasible schedule for Earliest Deadline Scheduling
-- Algorithmn

THE OP INFOLIST : OP INFO LIST.LIST;
MAYBEAVAILABLE : SCHE.DULE INPUTS LIST.LIST;

331

HO : -L XN GER :.e P0NICDBL0CFLENGTH;

C?: OP07? IH TLO;T

begin
BUI LD OP ItZFrO LIST (THE GRAPH, THE 03? INFO LIST);
L :-' TFlinE OP NO LIST;

-- put all the end flodvS, which has3 no predecessors, into
-MY DE AVAILABLE list

w~hile 03? INF0 LIST.NON EMPTY(L) loop
P :- OP XNF7O LIST.vALUE(L;
if VO07(DIG iP1.V LISTS.NHQZ -EPTY (?. PREDICESSORS)) then
PROCESS - DL-E1116NODZ (t4AYiBEAVAILABt, P. NODE);

end If#-
OP INFO LIST. NEXT (L) ;

end Toop;-
PROCESS EDL AGENDA(THE OP INFO LIST, MAY-BE-AVAIABLE, AGENDA, ML):_

end SCHEDULE WITH EARLXE~ST DEADLINE;

procedure CREATE STATIC SCHEDULE (THE -GRAPH : in DIGRAPHGKAPH;
THE SCHEDULE INPUTS : in SCHEDULE INPUTS -L;ST.LIST;
HAP40NXC BLCK -LENGTH : in INTEGER) is

-- creates the static schedule output and prints to "ss.a" file.
V LIST :DIGRAPH.V LISTS.LIST :-THE GRAPH.VEKTICES;
S_: SCHEDULE INPUTS LIST.LIST :-THE7SCHEDULE-INPUTS;
SCHEDULE T EXT -IO.FILE -TYPE;
OUTPUT TEXT IO.0FILE MODE :- TEXT IO.OUTTILE;
COUNTER :INTEGER :- 1;

package VALUE 10 is new TEXTIO.INTEGER-IO(VALUE);
use VALUE 10;
package INTEGERIO is new TEXT 10. INTEGER 10 (INTEGER);
use INTEGERIC;

begin
TEXT IO.CREATE(SCHEDULE, OUTPUT, "/n/suns2/work/caps/prototypes/ss.a");
TEXT IXO.PUT LINE(SCHEDULE, "with TL; use TL;");
TEXTixo.PUT LINz(SCHEDULE, "with DS-PACKAGE; Use DSPACKAGE;");
TEXT IO.PUT(SCHEDULE, "with PRIORITYDEFINITIONS; ");
TEXTiXO.PUT LINE (SCHEDULE, "Use PRIORITY -DEFINITIONS;");
TEXTi'0.PUT LINE(SCHEDULE, "with CALENDAR; use CALENDAR;");
TZX" I O.PUT LINE(SCHEDULE, "with TEXT -10; use TEXT 10;"):
TEXI.PUTiLiNE(SCHEDULE, "procedure STATICSCHEDULE is");

while DIGRAPH * V LISTS. NON EMPTY (V _LIST) lo-p
TEXT -IO.SET -COL(SCHEDULE, 3);
VARSTRING.*PUT (SCHEDULE, DIGRAPI. VLISThk fj(,.yIST) .THZE OPERATOR ID);
TEXT IO.PUT LINE(SCHEDULE, " -TIING-ERR,, 1 t-eption;");
DIGRaPH.VL ISTS.NEXT(V_LIST);

end loop;-

332

TEX% 10. SET COL(SCHEDULE, 3);

TEXT 10. PUT LINZ(SCHEDULE, "task SCHEDULE LO");
TEXTIXO.SET-COL(SCHEDULE, 5);

TEXT 10. PUT IXNE (SCHEDULE, "pragma priori~ty (STATIC SCHEDULE ?RXORITY) ;0);

TEXT IXO.SET COL(SCHEDULE1 3);

TEXT XO.PUT LINE(SCHEDULEt "and SCHEDULE;"):

TEXT7 IO. EW LINE (SCHEDULE) ;
TEXT I0.SET COL(SCHEDULEt 3);

TEXT IO.PUT LINE(SCHEDULE, "tak body SCHEDULE is");

TEXT IO.TUT(SCHEDULE, N PERIOD :constant :- -);

IITGERito.PUT(SCHE.DULE, HARMONIC -BLOCK LENGTH, 1);

TEXT - O.PUTLINlE(SCHEDULE, ;)

S :-: TH CZUE NUS

while SCHEDULE INPUTS LIST.N E-MPTY (5) loop
TEXT IO.SET COL(SCHEDULE, 5);

VARSTRXNG. PUT (SCHEDULE, SCHEDULE INPUTS LXST.VALU (5) .THI OERATOR);

TEXT IO.PUT(SCHEDULE, "S.TOP-TIMEO);

INTEGERXO.PUT(SCHEDULE, COUNTER. 1);

TEXT IO.PUT(SCHEDULE, I : constant t- 0);
VALUE_10I. PUT (SCH&DULE, SCHEDULE INPUTS LIST.VALUE (5).THE STOlP, 1);

TEXT IO.PUT LINE(SCHEDULE, ";a);

SCHEDULE IXNPUTSLIST.NEXT(S);
COUNTER :- COUNTER + 1;

end loop;
TEXT -IO.SET_-COL(SCHEDULE, 5);

TEXT IO.PUT LINE(SCHEDULE, "SLACK TIME : duration;");

TEXT7IO.SETCOL(SCHEDULE, 5);

TEXT Io.PUT7LINE(SCHEDULE, "STARTOFPERIOD :time :- clock;");

TEXT I O.PUT -LINE (SCHEDULE, "begin");-
TEXTIO.PUi --NE(SCHEDULE, -loop");

TEXT IO.SET COL(SCHEDULE, 5);

TEXTIO.PUT(SCHEDULE, "beginu);

S :- THESCHEDULE INPUTS;

COUNTER :- 1;
while SCHEDULE INPUTS LIST.NON EM4PTY(S) loop

TE,-T-IO.SET-COL(SCHZDULE, 7);

VARSTRING.PUT (SCHEDULE, SCHEDULE I NPUTS LIST.VALU (5) .THE OIPERATOR);

TEXT I0.PUT LINE(SCHZDULE, ";");
TEXT IO.SET COL(SCHEDULE, 7);
TEXT IO.PUT(SCHEDULE, "SLACK -TIME :- START 'oF PERIOD +)

vARSTRING .PUT (SCHEDULE, SCHEDULE INPUTS LIST.VALUE(S) TMlE OPERATOR);

TEXT IO.PUT(SCHEDULE, " STOP TIME");

INTEGERIO.PUT(SCHEDULE, COUNTER,l);

TEXTIO.PUT-LINE(SCHEDULE, " - CLOCK;");

TEXT IO.SETCOL(SCHEDULE, 7);

TEXT IO.PUT-Lfl4E(SCHEDULE, "if SLACK-TIME >- 0.0 then");

TEXT IO.SET COL(SCHEDULE, 9);
TEXT IO.PUTLIHE(SCHEDULE, "delay (SLACKTIM);");

TEXTIO.SETCOL(SCHEDULE, 7);

TEXT I.UTLN(SCHEDULE, "else");

333

TET' OSET COL(SCHEDULE# 9);
TEXT -IO.PUT(SCIEDULEf "raise)

VARSTRING. PUT (SCHEDULE, SCHEDULE INPUTS LIST.VALUE(S) .THE OPERATOR);
TEXT XO0 UT LXNE(SCIIEDULE1 "-TIMING ERa~RR;);
TEXi 10. SET COL(SCHEDULE, 7);-

TExTi0x.PuT -LxNE(SCIIEDULtf "end if;");
SCHEDULE INL UTS LIST. EXT(S);

if scii uULCIPUTS-LIST.NON1EMPTY (5) then
-- pointer is pointing to the next record after this.
TEXT - O.SET -COL(SCHEDULE, 7);
TEXT X0.L'UT(SCHEDULE, "delay (START Or PERIOD +)

VALUEI. O. PUT (SCHEDULE,, SCHEDULE INPUTS7LIST.VALU (3) .THZ START, 1);

TEXT IO.PUT -LINE(scHEDULE, F LOCK);.;);
TEXT710.NEW LINE (SCHEDULE);

end If;
COUNTER :- COUNTER + 1;

end loop;

TEXT -IO.SET -COL(SCHEDULE, 7);

TEXT IO.PUT LINE(SCHEDULE, "START Or PERIOD :- START-orPERIOD + PERIOD;");
TEXT - Q.SET7COL(SCHEDULE, 7);
TEXT IOJUT LI11E(SCIIEDULE, "delay (START oF IPERIOD - clock);");

TEXT -X.SET -COL(SCHEDULE, 7);

TEXT IO.PUT LINE(SCHEDULE, "exception");
V LIST :- THE GRAPH.VERTICES;
while DIGRAPtr * V LISTS. NON EMPTYt(V LIST) loop

TEXT -IO.SET CO6L (SCIIEDULE, 9);
TEXT -IO.PUT(SCHEDULE, "when)
VARSTRXNG.PUT (SCHEDULE, DIGRAPH.V LISTS .VALUE (V_LIST) .THE OPERATOR ID);
TEXT -IO.PUT -LINE(SCHEDULEt "TIXMINGERROR '->");

TEXT -O.SET COL(SCHEDULZI 11);
TEXT" IO.PUi(SCHEDULE, "PUT LINE("Itining error from operator)
VARSTRING.PUT (SCHEDULE, DIGRAPH.V LISTS.VALUE (V _LIST) .THE OPkRATORID);

TEXT I0.PUT -LINE (SCHEDULE, "";)
TEXT IO0.SET_-COL(SCHEDULE, 11);
TEXT" IO.PUi LINE(SCHEDULE, "START-orPERIOD :-clock;");
DIGRAPH.*V LISTS.*NEXT (V _LIST);

end loop;

TEXT -IO.SET -COL(SCHEDULE, 7);

TEXT IO.PUT -LINE(SCHEDULE, "end;");
TEXT IO.SET COL(SCHEDULE, 5);
TEXT IO.PUT LIHE(SCHEDULt, "end loop;");
TEXT IO.SET -COL(SCHEDULE, 3);
TEXTIO.PUT LINE(SCHEDULE, "end SCHEDULE;");
TEXT -IO.NEW LINE (SCHEDULE);
TEXT -IO.PUT LINE(SCHEDULE, "begin");

TEXT -IO.SET7COL(SCHEDULE, 3);
TEXT -IO.PUT LINSI(SCHEDULE, "null;");

TEXT IO.PUTLINE(SCHEDULE, "end STATIC-SCHEDULE;

334

and CIIEATE-STATICQSCHEDULE;

end OPZRATO1R SCHEDULER;

335

0
APPENDIX AB STATIC SCHEDULER LIST STRUCTURE

-- file: sequence s.a
-- author: murat kilic
-- isaac mostov
-- tony davis
-- date: %ep 89
-- modified: oct 89 by murat kilic

generic
type ITEM is private;

package SEQUENCES is

type NODE;
type LIST is access NODE;
type NODE is
record

ELEMENT : ITEM;
NEXT : LIST;

end record;

BAD VALUE : exception;

function EQUAL(LI : in LIST; L2 : in LIST) return BOOLEAN;

procedure EMPTY(L : out LIST);

function NONEMPTY(L : in LIST) return BOOLEAN;

function SUBSEQUENCE(LI : in LIST; L2 : in LIST) return BOOLEAN;

function MEMBER(X : in ITEM; L : in LIST) return BOOLEAN;

procedure ADD(X : in ITEM; L : in out LIST);

procedure REMOVE(X : in ITEM; L : in out LIST);

procedure LISTREVERSE(L1 : in LIST; L2 : in out LIST);

procedure DUPLICATE(L1 : in LIST; L2 : in out LIST);

function LOOK4(X : in ITEM; L : in LIST) return LIST;

336

procedure kNLXT(L : in out LIST);

function VALUE(L : in LIST) return XTll;

end SZQUEHCES;

0 337

APPENDIX AC STATIC SCHEDULER LIST STRUCTURE

-- file: sequence b.a

-- author: murAt kilic
-- iaac Moatov
-- tony davis
-- date: 3ep 89
-- modified: oct 89 by murat kilic

with UNCHECKEDDEALLOCATION;

package body SEQUENCES iS

procedure FREE is new UNCHECKED_DEALLOCATION(NODE, LIST);

function NON EMPTY(L : in LIST) return BOOLEAN is
begin

if L - null then
return FALSE;

else
return TRUE;

end if;
end NONEMPTY;

procedure NEXT(L : in out LIST) is
begin

if L I- null then
L :- L.NEXT;

end if;
end NEXT;

function LOOK4(X : in ITEM; L in LIST) return LIST is

Li : LIST :- L;
begin
while NON EMPTY(Ll) loop

if Ll.ELEMENT - X then
return Li;

end if;
NEXT(Li);

end loop;
return null;

end LOOK4;

338

procdureADD (X :in ITEM; L : in out LIST) is

-ITEM IS ADDED TO THE HEAD OF THE LIST
T:LIST qMOE

begin
T.ELZEHENT :X;

T.NZXT :- L;
L :- T;

end ADD;

function SUBSEQUZNCn(LI : in LIST; L2 in LIXST) return MOOLIAN is
L : LIST :- lil;

begin
while NONKEHPTY(L) loop

if not HMBMEP(VALUE(L), L2) then
return FALSE;

end if;
NEXT(L);

end loop;
return TRUE;

end SUBSEQUEN4CE;

function EQUAL(LI : in LIST; L2 : in LIST) return BCOLEAN is
begin

return (SUBSEQUEHCE(L1, L2) and SU3.11QUE1ICE(L2, Li));
end EQUAL;

procedure EMPTY (L :out LIST) in

L :- null;
end EMPTY;

function HMMER(X :in ITEM; L :in LIST) return DOOLEAN is
begin

if LOOM4 (X, L) /- null then
return TRUE;

else
return FALSE;

end if;
end MEMBER;*

procedure REMOVE (X : in ITEM; L :in out LIST) is
CURR : LIST :-L;
PREV : LIST :-null;
TEMP : LIST :-null;

begin
while NOREMPTY (CURR) loop

if VALUEZ(CURR) - X then
TEMP :- CURR;
NEXT(CURR);
FREE (TEMP);
if PREy 1 null then

0 339

PREV.IlEXT :- CURR;
else
L :- CURR;

end if;
else

PREV :- CURR;
NEXT(CURR);

end if;
end loop;

end REMOVE;

procedure LIST REVERSE(L1 in LIST; L2 : in out LIST) in
L : LIST :- LI;

begin
EMPTY (L2);
while NON EMPTY(L) loop

ADD (VALUE (L), L2);
NEXT (L);

end loop;
end LIST REVERSE;

procedure DUPLICATE(L1 : in LIST; L2 : in out LIST) is

TEMP : LIST;
L : LIST :- Li;

begin

EMPTY(L2);
while NON EMPTY(L) loop

ADD (VALUE (L), TEMP);
NEXT(L).;

end loop;
LIST REVERSE (TEMP, L2);

end DUPLICATE;

function VALUE(L : in LIST) return ITEM is
begin

if NON EMPTY(L) then
return L.ELMENT;

else
raise DAD-VALUE;

end if;
end VALUE;

end SEQUENCES;

340

APPENDIX AD STATIC SCHEDULER TOPOLOCICAL SORTER

-file: tsort B.M
-author; IWIurat kilic
date: Oct 89

m-todified: dec 89 by murat kilic
--

with rILES;use FILES;
package TOPOLOGICAL SORTER is

procedure TOPOLOGICAL SORT
(G : ina DXGRAJ'I.GAPH;
PRECEDENCE LIST :in out DIGPAPH.V-LXSTS.X#IST);

end TOPOLOGICAL SORTER;

* 341

APPENDIX AE STATIC SCHEDULER TOPOLOGICAL SORTER

-- file: tsort b.a
author: mura. Kilic

-- date: oct 89
-- modified: nov 89 by murat kilic

with TEXT..O;
with FILES; use FILES;

package body TOPOLOGICAL-SORTER is

-- This package determines the precedence order in which operators must
-- execute In the final schridule. This information is determined
-- from the graph.

procedure TOPOLOGICAL-SORT (G: in DIGRAPH.GRAPH;
PRECEDENCE-LIST: in out DIGRAPH.VLISTS.LIST) is

-- This procedure determines which operatora in the graph must
-- be executed before another.

Q : DIGRAPH.VLISTS.LIST;

begin
DIGRAPH.TSORT(G, PRECEDENCE LIST);
Q :- PRECEDENCE-LIST;

end TOPOLOGICALSORT;

end TOPOLOGICAL-SORTER;

342

APPENDIX AF DYNAMIC SCHEDULER

--
-- file: dynamic acheduler.a
-- author: frank palazzo
-- date: dec 89
-- modified: dec 89 by laura J. white

with TEXT 10; use TEXT 10;
procedure DYNAMIC -SCHEDULER in
MON CRITS : FILE TYPE;
DSV3 : TILE TYPEC;
IN STRING : STRIiiG(l..72);
LA:ST : NATURAL;

begin
OPEN (NON CYLITS, IN FILE, R/n/suns2/work/caps/prototypes/non crits');
CREATE (DSV3, OUTF IiLE, 0/n/suns2/work/caps/prototypss/ds.a")-;
PUT LINE(DSV3, w;ith TL; use TL;");
PUT LINE(DSV3, "package DS PACKAGE is*);
PUT LINE(DSV3, - task DYNAMHIC-SCHEDU)LE is-);

-system defined priority for dynamic schedule
PUT LINE(DSV3, N pragna priority (1);");
PUT LINE(DSV3, - end DYNAMIM SCHEDULE;*);
PUT LINE(DSV3, "end DS-PACKAGE;");
NEW LINE (DSV3) ;
PUT_-LINE(DSV3, -package body DS PACKAGE is*);
PUT LINE(DSV3, - task body DYNAMICSCHEDULE is");
PUITLINZ (DSV3, "begin");
PUT LINE(DSV3, - delay (1.0);");
while not ENDOF_rILE(NONCRITS) loop
begin

GETLINE(NON-CRITS, IN-STRING, LAST.A);
PUT(DSV3, 11 0);
for INDEX in l..LAST loop
PUT (DSV3, IN STRING (INDEX));

end loop;
PUT _LINE(DSV3, ;)

end;
end loop;
PUT LINE(DSV3, " end DYNAMIC SCHEDULE;");
PUTLINE(DSV3, "end DSPACKAGE;-);

end DYNAMICSCHEDULER;

* ~3

LIST OF REFERENCES

1. Booch, G., Software Engineering with Ada, 2d ed., Benjamin/Cummings, 1987.

2. Schach, S. R., Softare Engineering, Aksen Associates, 1990.

3. Lamb, D. A., Softeware Engineering Planning for Change, Prentice Hall,
1988.

4. Boehm, B. W., "A Spiral Model of Softwart Development and Enhancement",
ACM SIGSOFTSoftare Engineering Notes, v. 11, no. 4, pp. 14-26,
August 1986.

5. Luqi, "Sofiwaro Evolution Through Rapid Prototyping", Computer, v. 22,
no. 5, pp. 13-25, May 1989.

6. Boehm, B., "Verifying and Validating Software Requirements and Design
Specifications", IEEE Software, v. I no. 1, January 1984.

7. Luqi, "Handling Timing Constraints in Rapid Prototyping",
Proceedings of the 22nd Annual Hawaii International Conference on
System Sciences, IEEE Computer Society, pp. 4-17-424, January 1989.

8. Tanik, M. M. and Yeh, R. T., "Rapid Prototyping in Software Development",
Computer, v. 22, n. 5, pp. 9-10, May 1989.

9. Luqi, Rapid Prototyping for Large Softiare System Design, Ph.D.
Dissertation, University of Minnesota, Minneapolis, Minnesota, May 1986.

10. Thorstenson, R. K., A Graphical Editor for the Computer Aided Prototyping
System, M.S. Thesis, Naval Postgraduate School, Monterey, California,
December 1988.

11. Porter, S. W., Design of a Syntax Directed Editor for PSDL, M.S. Thesis,
Naval Postgraduate School, Monterey, California, December 1988.

12. Douglas, B. S., A Conceptual Level Design of a Design Database for the
Computer-Aided Prototyping System, M.S. Thesis, Naval Postgradute School,
Monterey, California, December 1988.

344

. 13. Galik, D., A Concept'ual Design of a Softw-are Base Mariagement System For
the Comsputer Aided Prototyping System, M.S. T"hesis, Naval Poutgraduae
School, Monterey, California, December 198R,

14. Altizer, C., Impkmentation of a Language Translator for she Compuer
Aided Protyping S Ystem, M.S. Thesis, Naval Postgraduate School,
Monterey, California, December 1988.

15. Marlowe, L., A Scheduler for Critical Time Constraints, M.S. 'Thesis,
Naval Postgraduate School, Monterey, California, Decembe 1988.

16. Kill;, M., Static Schedulers for Embedded Real-Time Systems, M.S. Thesis,
Naval Postgraduate School, Montexty, California, December 1989.

17. Wood, M. B., Run-Time Support or Rapid Proftoyping, M.S. lbesis,
Naval Postgraduate School, Monterey, California, December 1988.

18. Ambler, A. L. anid Burnett, M. M,. "Ifuenc of Visual Technology on the
Evolution of Language EnvL'onments", Computer, v. 22, n.10, pp. 9-22,
October 1989.

19. MacLennan, B. JL, Principles of Programming Languages Design, Evaluation,. and Implementation, 2d ed., Holt, Rinehart and Winston, 1M8.

20. Naval Postgraduate School NPSS2-89-026, Issues in Language Support for
Rapid Prototyping, by Luqi and Berzins, March 1989.

21. Rochkind, M. J., Advanced UIX Pro gramming, Prentice-Hail, 1983.

22. Kaplian, S. M. and others, "An architecture for Tool Integration", pp. 112-125, in
Advanced Programming Environments, Springer-Verlag, 1986.

23. Rauni, H. G., Design arnd Implementation of an Expert User Interface for the
Computer Aided Prototyping System, M.S. Thesis, Naval Postgraduate School,
Monterey, California, December 1988.

24. Shneidernan, B., Designing the User Interface: Strategies for Effective
Human-Computer Interaction, Addison-Wesley, 1987.

25. Darnell, P. A. and Margolis, P. E., Software Engineering in C,
Springer-Verlag, 1988.

343

26. Kernighan, B. W. and Ritchic, D. M., The C Programming Language, 2d ed.,
Prentice-Hall, 1988.

27. Naval Postgraduate School NPS52-89-028, Graphical Support for Reducing
Information Overload in Rapid Prototypiag, by Luqi and Barnes P. IQ,
March 1989.

28. Reps, T. W. and Teitelbaun, T., The Synthesizer Generator: A System for
Constructing Laoguage-Based Editors, Springer-Verlag, 1989.

29. Reps, T. W. and Teitelbaum, T., The Synthesizer Generator Reference
Manual, 3d ed., Springer-Verlag, 1989.

30. Pamas, D. L., "Enhancing Reusability with Information Hiding", ITT
Proceedings !f the Workshop on Reusability in Programming, pp. 240-247,
1983.

31. Conn, R., The Ada Softanre Repository and the Defense Data Network,
Zoetrope Publishing Co., Inc., New York, NY, 1987.

32. Johnson, R. E. and Foote, B., "Designing Reusable Classes", Journal of
Object-Oriented Programming, June/July 1988.

33. Matsurmoto, Y., "A Software: Factory: An Overall Approach to Software
Production", Tutorial:Software Reusability, Computer Society
Press of the IEEE, 1987.

34. Burton, B. A., "The Reusable Software Librury,", IEEE Software,
pp. 25-32, July 1987.

35. Pricto-Diaz, R. and Freeman, P., "Classifying Software for Reusability",
IEEE Software, pp.6-16, January 1987.

346

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

3. Director of Research Administration
Attn: Prof. Howard
Code 012
Naval Postgraduate School
Monterey, California 93943-5100

4. Chaian I. Code 52
Naval Postgraduate School
Monterey, California 93943-5100

5. Chief of Naval Research
800 N. Quincy Street
Arlington, Virghiia 22217-5000

6. Center for Naval Analysis
4401 Ford Avenue
Alexandria, Virginia 22302-0268

7. National Science Foundation
Division of Computer and Computation Research
Attn: Tom Keenan
Washington, D.C. 20550

8. Ada Joint Program Office
OUSDRE(R&AT)
Pentagon
Washington, D.C. 20301

347

9. Naval Sea Systems Command
Attn. CAPT Joel Crandall
National Cerptcr #2, Suite 7N06
Washington, D. C. 22202

10. Naval Sea Systems Conuand
Attn. CAPT A. Thompson
National Center #2, Suite 7N06
Washington, D. C. 22202

11. Commanding Officer
Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

12. Navy Ocean System Center
Attn. Linwood Sutton, Code 423
San Diego, California 92152-5000

13. Navy Ocean System Center
Attn. Les Anderson, Code 413
San Diego, California 92152-5000

14. Office of Naval Research

Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

15. Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. R. Wachter
800 N. Quincy Street
Arlington, Virginia 22217-5000

16. Office of Naval Research
Applied Mathematics and Computer Science, Code 1211
Attn. Mr. J. Smith
800 N. Quincy Street
Ar!ington, Virginia 22217-5000

348

. 17. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. B. BoOhe(
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

18. Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

19. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wi lon Boulevard
Arlington, Virginia 22209-2308

20. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

21. Chief of Naval Operations
Attn: Dr. R. M. Carroll (OP-01B2)
Washirgton, D.C. 20350

22. Chief of Naval Operations
Attn: Dr. Earl Chavis (OP-162)
Washington, D.C. 20350

23. Naval Surface Warfare Center
Code K54
Attn: Dr. William McCoy
Dahigren, Virginia 22448

24. Naval Surface Warfare Center
Code U33
Attn: Phil Hwang
Silver Spring, Maryland 20903-5000

25. Professor Luqi
Code 52Lq
Naval Postgraduate School
Computer Science Department
Monterey, California 93943-5100

4 349

